正△ABC中,BC=20,D、E分別在AB、AC上,若△AED∽△ABC,且AD:DB=3:5,AE:EC=2,則DE=________.


分析:先根據(jù)AD:DB=3:5,可設(shè)AD=3x,則DB=5x,根據(jù)△ABC是等邊三角形可得出x的值,進(jìn)而得出AD的長,再根據(jù)相似三角形的對應(yīng)邊成比例即可得出結(jié)論.
解答:∵AD:DB=3:5,
∴設(shè)AD=3x,則DB=5x,
∵△ABC是等邊三角形,
∴3x+5x=20,解得x=,
∴AD=3x=,
∵△AED∽△ABC,
=,即=,解得DE=
故答案為:
點(diǎn)評:本題考查的是相似三角形的性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知在正△ABC中,AB=4,點(diǎn)M是射線AB上的任意一點(diǎn)(點(diǎn)M與點(diǎn)A、B不重合),點(diǎn)N在邊BC的延長線上,且AM=CN.連接MN,交直線AC于點(diǎn)D.設(shè)AM=x,CD=y.
(1)如圖,當(dāng)點(diǎn)M在邊AB上時,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
(2)當(dāng)點(diǎn)M在邊AB上,且四邊形BCDM的面積等于△DCN面積的4倍時,求x的值.
(3)過點(diǎn)M作ME⊥AC,垂足為點(diǎn)E.當(dāng)點(diǎn)M在射線AB上移動時,線段DE的長是否會改變?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•新昌縣模擬)上課時老師出示了下面的題目:
如圖1,正△ABC中,P為BC上一點(diǎn),作PE⊥AB,PF⊥AC,BG⊥AC,垂足分別為E,F(xiàn),G.
求證:PE+PF=BG.
喜歡思考的小明,給出了如下證法:
證明:連接AP,∵S△ABC=S△ABP+S△ACP
又PE⊥AB,PF⊥AC,BG⊥AC
1
2
AC•BG=
1
2
AB•PE+
1
2
AC•PF

∵AB=AC
∴BG=PE+PF
老師非常贊賞,面積法證明本題真簡潔!老師又引導(dǎo)學(xué)生繼續(xù)探索.
(1)當(dāng)點(diǎn)P在CB延長線上時,上述結(jié)論是否成立?若不成立,探究三條線段之間PE,PF,BG之間的數(shù)量關(guān)系.寫出猜想,不要求證明.
(2)①將“P為BC上一點(diǎn)”改成”P為正△ABC內(nèi)一點(diǎn)”,作PE⊥AB,PF⊥AC,PM⊥BC,BG⊥AC,垂足分別為E,F(xiàn),M,G.有類似結(jié)論嗎?請寫出結(jié)論并證明.
②若點(diǎn)P在如圖所示的位置時,①的結(jié)論是否成立?試探究四條線段PE,PF,PM,BG的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拓展與探索:
如圖,在正△ABC中,點(diǎn)E在AC上,點(diǎn)D在BC的延長線上.

(1)如圖(1),AE=EC=CD,求證:BE=ED;
(2)若E為AC上異于A、C的任一點(diǎn),
①當(dāng)AE=CD時,如圖(2),(1)中結(jié)論是否仍然成立?為什么?
②當(dāng)EC=CD時呢?
(3)若E為AC延長線上一點(diǎn),且AE=CD,試探索BE與ED間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正△ABC中,BC=20,D、E分別在AB、AC上,若△AED∽△ABC,且AD:DB=3:5,AE:EC=2,則DE=
15
2
15
2

查看答案和解析>>

同步練習(xí)冊答案