【題目】“8字”的性質(zhì)及應(yīng)用:
(1)如圖①,AD、BC相交于點(diǎn)O,得到一個(gè)“8字”ABCD,求證:∠A+∠B=∠C+∠D.
(2)圖②中共有多少個(gè)“8字”?
(3)如圖②,∠ABC和∠ADC的平分線相交于點(diǎn)E,利用(1)中的結(jié)論證明∠E=(∠A+∠C).
【答案】(1)證明見解析;(2)3;(3)證明見解析.
【解析】
(1)根據(jù)三角形內(nèi)角和定理和對頂角相等解答即可;
(2)根據(jù)題中給出的“8字”的概念解答即可;
(3)根據(jù)角平分線的定義和三角形的外角的性質(zhì)解答即可.
(1)證明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,
又∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:圖②中有:ABCD、BECD、ABED,3個(gè)“8字”;
(3)證明:∵BE平分∠ABC,DE平分∠ADC,
∴∠ABE=∠CBE=∠ABC,∠CDE=∠ADE=∠ADC,
∵∠A+∠ABE=∠E+∠ADE,∠C+∠CDE=∠E+∠CBE,
∴∠E=(∠A+∠C).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017廣東。┤鐖D,AB是⊙O的直徑,AB=,點(diǎn)E為線段OB上一點(diǎn)(不與O,B重合),作CE⊥OB,交⊙O于點(diǎn)C,垂足為點(diǎn)E,作直徑CD,過點(diǎn)C的切線交DB的延長線于點(diǎn)P,AF⊥PC于點(diǎn)F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當(dāng)時(shí),求劣弧的長度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;
(2)在直線l上找一點(diǎn)P,使PB′+PC的長最短;
(3)若△ACM是以AC為腰的等腰三角形,點(diǎn)M在小正方形的頂點(diǎn)上.這樣的點(diǎn)M共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)共有500名學(xué)生,在“世界讀書日”前夕,開展了“閱讀助我成長”的讀書活動(dòng).為了解該年級(jí)學(xué)生在此次活動(dòng)中課外閱讀情況,童威隨機(jī)抽取m名學(xué)生,調(diào)查他們課外閱讀書籍的數(shù)量,將收集的數(shù)據(jù)整理成如下統(tǒng)計(jì)表和扇形圖.
學(xué)生讀書數(shù)量統(tǒng)計(jì)表
閱讀量/本 | 學(xué)生人數(shù) |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接寫出m、a、b的值;
(2)估計(jì)該年級(jí)全體學(xué)生在這次活動(dòng)中課外閱讀書籍的總量大約是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:在一個(gè)三角形中,如果一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的3倍,那么這樣的三角形我們稱之為“和諧三角形”.如:三個(gè)內(nèi)角分別為105°,40°,35°的三角形是“和諧三角形”
概念理解:如圖1,∠MON=60°,在射線OM上找一點(diǎn)A,過點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交線段OB于點(diǎn)C(點(diǎn)C不與O,B重合)
(1)∠ABO的度數(shù)為______,△AOB______(填“是”或“不是”)“和諧三角形”;
(2)若∠ACB=80°,求證:△AOC是“和諧三角形”.
應(yīng)用拓展:(3)如圖2,點(diǎn)D在△ABC的邊AB上,連接DC,作∠ADC的平分線交AC于點(diǎn)E,在DC上取點(diǎn)F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和諧三角形”,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點(diǎn)A(0,1),與它的對稱軸直線x=1交于點(diǎn)B.
(1)直接寫出拋物線L的解析式;
(2)如圖1,過定點(diǎn)的直線y=kx﹣k+4(k<0)與拋物線L交于點(diǎn)M、N.若△BMN的面積等于1,求k的值;
(3)如圖2,將拋物線L向上平移m(m>0)個(gè)單位長度得到拋物線L1,拋物線L1與y軸交于點(diǎn)C,過點(diǎn)C作y軸的垂線交拋物線L1于另一點(diǎn)D.F為拋物線L1的對稱軸與x軸的交點(diǎn),P為線段OC上一點(diǎn).若△PCD與△POF相似,并且符合條件的點(diǎn)P恰有2個(gè),求m的值及相應(yīng)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù),,的平均數(shù)為4,方差為3,那么數(shù)據(jù),,的平均數(shù)和方差分別是( )
A. 4, 3 B. 6 3 C. 3 4 D. 6 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價(jià)格購進(jìn)800件T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形ABCD的邊AB在y軸正半軸上,頂點(diǎn)A的坐標(biāo)為(0,2),設(shè)頂點(diǎn)C的坐標(biāo)為(a,b).
(1)頂點(diǎn)B的坐標(biāo)為 ,頂點(diǎn)D的坐標(biāo)為 (用a或b表示);
(2)如果將一個(gè)點(diǎn)的橫坐標(biāo)作為x的值,縱坐標(biāo)作為y的值,代入方程2x+3y=12成立,就說這個(gè)點(diǎn)的坐標(biāo)是方程2x+3y=12的解.已知頂點(diǎn)B和D的坐標(biāo)都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的條件下,平移長方形ABCD,使點(diǎn)B移動(dòng)到點(diǎn)D,得到新的長方形EDFG,
①這次平移可以看成是先將長方形ABCD向右平移 個(gè)單位長度,再向下平移 個(gè)單位長度的兩次平移;
②若點(diǎn)P(m,n)是對角線BD上的一點(diǎn),且點(diǎn)P的坐標(biāo)是方程2x+3y=12的解,試說明平移后點(diǎn)P的對應(yīng)點(diǎn)P′的坐標(biāo)也是方程2x+3y=12的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com