【題目】已知反比例函數(shù)的圖像與一次函數(shù)的圖像的一個交點的橫坐標是-3.
(1)求的值,并在指定坐標系中畫出這兩個函數(shù)的圖像;
(2)根據(jù)圖像,直接寫出使一次函數(shù)值大于反比例函數(shù)值時x的取值范圍 .
【答案】(1)k=6,詳見解析;(2)-3<x<0或x>2
【解析】
(1)把交點的橫坐標代入一次函數(shù)中求出交點坐標,再代入反比例函數(shù)中求得k,并作出函數(shù)圖象;
(2)通過圖象觀察,當-3<x<0或x>2時,一次函數(shù)值大于反比例函數(shù)值.
(1)把x=﹣3代入y=x+1中,得y=﹣3+1=﹣2,
∴交點為(﹣3,﹣2),
把(﹣3,﹣2)代入比例函數(shù)y=中,得k=6,
∴反比例函數(shù)的解析式為:,
列表
x | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | |||
| -1 | -1.5 | -2 | -3 | -6 | 6 | 3 | 2 | 1.5 | 1 | |||
-5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 |
描點,連線
(2)由圖象可知,當-3<x<0或x>2時,一次函數(shù)值大于反比例函數(shù)值.
故答案為:-3<x<0或x>2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點A1,A2,A3,A4和C1,C2,C3,C4分別是ABCD的五等分點,點B1,B2和D1,D2分別是BC和DA的三等分點,已知四邊形A4B2C4D2的面積為2,則平行四邊形ABCD的面積為( )
A. 4 B. C. D. 30
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空
已知,如圖,∥,∥,平分交于,平分交于,求證:∥
證明:∵∥
∴__________(兩直線平行,同旁內角互補)
∵∥
∴__________(兩直線平行,同旁內角互補)
∴_____________=________________
又∵平分
∴____________(角平分線定義)
又∵平分
∴____________(角平分線定義)
∴_____________=________________
∵∥
∴___________(兩直線平行,內錯角相等)
∴_____________=________________(等量代換)
∴∥(同位角相等,兩直線平行)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調查,要求被調查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調查結果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:
(1)在這次調查中,一共調查了 名市民,扇形統(tǒng)計圖中,C組對應的扇形圓心角是 °;
(2)請補全條形統(tǒng)計圖;
(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)該調查的樣本容量為________, =________%, =________%,“常!睂刃蔚膱A心角的度數(shù)為__________;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有3200名學生,請你估計其中“總是”對錯題進行整理、分析、改正的
學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)比較大。+1 (填“>”、“<”或者“ =”)
(2)其實我們可以利用三角形的知識在方格紙上畫圖驗證⑴的結果,請在圖①中畫出相應的圖形(設小正方形的邊長為1)
(3)請用(2)中的方法在圖②中畫圖比較大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關于直線的對稱,設點的運動時間為
(1)若
①如圖2,當點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
(2)當P點不與C點重合時,若直線PB’與直線CD相交于點M,且當t<3時存在某一時刻有結論∠PAM=45°成立,試探究:對于t>3的任意時刻,結論∠PAM=45°是否總是成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,BD=2AD,E,F,G分別是OA,OB,CD的中點,EG交FD于點H.則下列結論:①ED⊥CA;②EF=CG;③EH=EG;④S△EFD=S△CEG成立的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖所示,下列5個結論:①abc<0;②b<a+c;③4a+2b+c>0;④c<4b;⑤a+b<k(ka+b)(k為常數(shù),且k≠1).其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com