【題目】已知:在中,作對角線的垂直平分線,垂足為點(diǎn),分別交,于點(diǎn),,連接,.
(1)如圖1,求證:四邊形是菱形;
(2)如圖2,當(dāng),且時,在不添加任何輔助線情況下,請直接寫出圖2中的四條線段,使寫出的每條線段長度都等于長度的倍.
【答案】(1)見解析;(2),,,
【解析】
(1)證明,得到OE=OF,再結(jié)合OB=OD得出結(jié)論;
(2)證明Rt△ABE≌Rt△OBE,AB=OB,∠ABE=∠OBE=∠OBF,從而推出∠OBE=30°,再根據(jù)直角三角形的性質(zhì)以及矩形和菱形的性質(zhì)得到OB=OE=OD=AB=CD即可.
解:(1)證明:如圖1,∵四邊形是平行四邊形,
∴
∴,
在和中,
,
∴(ASA),
∴,
又∵,
∴四邊形是平行四邊形,
又∵,
∴為菱形;
(2)如圖2,,,,,
∵AE=OF,四邊形BFDE為菱形,
∴OE=OF=AE,∠EOB=90°,
在Rt△ABE和Rt△OBE中,
,
∴Rt△ABE≌Rt△OBE(HL),
∴AB=OB,∠ABE=∠OBE=∠OBF,
∵∠ABC=90°,
∴∠OBE=30°,
∴2OE=BE,
∴OB=OE=OD=AB=CD,
故答案為:OB,OD,AB,CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,點(diǎn)P在對角線BD上(點(diǎn)P不與點(diǎn)B重合),連接AP,過點(diǎn)P作PE⊥AP交直線BC于點(diǎn)E.
(1)如圖1,當(dāng)AB=BC時,猜想線段PA和PE的數(shù)量關(guān)系: ;
(2)如圖2,當(dāng)AB≠BC時.求證:
(3)若AB=8,BC=10,以AP,PE為邊作矩形APEF,連接BF,當(dāng)PE=時,直接寫出線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形AOBC的頂點(diǎn)B在y軸上,頂點(diǎn)A在反比例函數(shù)y=的圖象上,邊AC,OA分別交反比例函數(shù)y=的圖象于點(diǎn)D,點(diǎn)E,邊AC交x軸于點(diǎn)F,連接CE.已知四邊形OBCE的面積為12,sin∠AOF= ,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠狀病毒戰(zhàn)斗中,有152箱公共衛(wèi)生防護(hù)用品要運(yùn)到、兩城鎮(zhèn),若用大小貨車共15輛,則恰好能一次性運(yùn)完這批防護(hù)用品,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其中用大貨車運(yùn)往、兩城鎮(zhèn)的運(yùn)費(fèi)分別為每輛800元和900元,用小貨車運(yùn)往、兩城鎮(zhèn)的運(yùn)費(fèi)分別為每輛400元和600元.
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往城鎮(zhèn),其余貨車前往城鎮(zhèn),設(shè)前往城鎮(zhèn)的大貨車為輛,前往、兩城鎮(zhèn)總費(fèi)用為元,試求出與的函數(shù)解析式.若運(yùn)往城鎮(zhèn)的防護(hù)用品不能少于100箱,請你寫出符合要求的最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在端午節(jié)前夕購進(jìn)價格為3元/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個.
(1)若每個粽子售價4.5元,則每天的銷量是______個;
(2)為了維護(hù)消費(fèi)者利益,物價部門規(guī)定,該品牌粽子售價不能超過進(jìn)價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形,頂點(diǎn)在雙曲線上,點(diǎn)的坐標(biāo)為.過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第二個等邊;過作交雙曲線于點(diǎn),過作交軸于點(diǎn),得到第三個等邊;以此類推,... 則點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題)用n個2×1矩形,鑲嵌一個2×n矩形,有多少種不同的鑲嵌方案?(2×n矩形表示矩形的鄰邊是2和n)
(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.
探究一:用1個2×1矩形,鑲嵌一個2×1矩形,有多少種不同的鑲嵌方案?
如圖(1),顯然只有1種鑲嵌方案.所以,a1=1.
探究二:用2個2×1矩形,鑲嵌一個2×2矩形,有多少種不同的鑲嵌方案?
如圖(2),顯然只有2種鑲嵌方案.所以,a2=2.
探究三:用3個2×1矩形,鑲嵌一個2×3矩形,有多少種不同的鑲嵌方案?
一類:在探究一每個鑲嵌圖的右側(cè)再橫著鑲嵌2個2×1矩形,有1種鑲嵌方案;
二類:在探究二每個鑲嵌圖的右側(cè)再豎著鑲嵌1個2×1矩形,有2種鑲嵌方案;
如圖(3).所以,a3=1+2=3.
探究四:用4個2×1矩形,鑲嵌一個2×4矩形,有多少種不同的鑲嵌方案?
一類:在探究二每個鑲嵌圖的右側(cè)再橫著鑲嵌2個2×1矩形,有 種鑲嵌方案;
二類:在探究三每個鑲嵌圖的右側(cè)再豎著鑲嵌1個2×1矩形,有 種鑲嵌方案;
所以,a4= .
探究五:用5個2×1矩形,鑲嵌一個2×5矩形,有多少種不同的鑲嵌方案?
(仿照上述方法,寫出探究過程,不用畫圖)
……
(結(jié)論)用n個2×1矩形,鑲嵌一個2×n矩形,有多少種不同的鑲嵌方案?
(直接寫出an與an﹣1,an﹣2的關(guān)系式,不寫解答過程).
(應(yīng)用)用10個2×1矩形,鑲嵌一個2×10矩形,有 種不同的鑲嵌方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個等腰直角三角形放在平面直角坐標(biāo)系中,∠ACB=90°,點(diǎn)C(-1,0),點(diǎn)B在反比例函數(shù)的圖像上,且y軸平分∠BAC,則k的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)是弧上一點(diǎn),且,與交與點(diǎn).
(1)求證:是的切線;
(2)若平分,求證:;
(3)在(2)的條件下,延長,交于點(diǎn),若,,求的長和的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com