如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線(xiàn)和BC所在的直線(xiàn)建立平面直角坐標(biāo)系,拋物線(xiàn)y=-x2+x+4經(jīng)過(guò)A、B兩點(diǎn).
(1)寫(xiě)出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若一條與y軸重合的直線(xiàn)l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線(xiàn)段OA、CA和拋物線(xiàn)于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線(xiàn)l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,拋物線(xiàn)上是否存在一點(diǎn)P,使得△PAM是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)拋物線(xiàn)的解析式中,令x=0,能確定點(diǎn)B的坐標(biāo);令y=0,能確定點(diǎn)A的坐標(biāo).
(2)四邊形PBCA可看作△ABC、△PBA兩部分;△ABC的面積是定值,關(guān)鍵是求出△PBA的面積表達(dá)式;若設(shè)直線(xiàn)l與直線(xiàn)AB的交點(diǎn)為Q,先用t表示出線(xiàn)段PQ的長(zhǎng),而△PAB的面積可由(PQ•OA)求得,在求出S、t的函數(shù)關(guān)系式后,由函數(shù)的性質(zhì)可求得S的最大值.
(3)△PAM中,∠APM是銳角,而PM∥y軸,∠AMP=∠ACO也不可能是直角,所以只有∠PAC是直角一種可能,即 直線(xiàn)AP、直線(xiàn)AC垂直,此時(shí)兩直線(xiàn)的斜率乘積為-1,先求出直線(xiàn)AC的解析式,聯(lián)立拋物線(xiàn)的解析式后可求得點(diǎn)P的坐標(biāo).
解答:解:(1)拋物線(xiàn)y=-x2+x+4中:
令x=0,y=4,則 B(0,4);
令y=0,0=-x2+x+4,解得 x1=-1、x2=8,則 A(8,0);
∴A(8,0)、B(0,4).

(2)△ABC中,AB=AC,AO⊥BC,則OB=OC=4,∴C(0,-4).
由A(8,0)、B(0,4),得:直線(xiàn)AB:y=-x+4;
依題意,知:OE=2t,即 E(2t,0);
∴P(2t,-2t2+7t+4)、Q(2t,-t+4),PQ=(-2t2+7t+4)-(-t+4)=-2t2+8t;
S=S△ABC+S△PAB=×8×8+×(-2t2+8t)×8=-8t2+32t+32=-8(t-2)2+64;
∴當(dāng)t=2時(shí),S有最大值,且最大值為64.

(3)∵PM∥y軸,∴∠AMP=∠ACO<90°;
而∠APM是銳角,所以△PAM若是直角三角形,只能是∠PAM=90°;
由A(8,0)、C(0,-4),得:直線(xiàn)AC:y=x-4;
所以,直線(xiàn)AP可設(shè)為:y=-2x+h,代入A(8,0),得:
-16+h=0,h=16
∴直線(xiàn)AP:y=-2x+16,聯(lián)立拋物線(xiàn)的解析式,得:
,解得 、
∴存在符合條件的點(diǎn)P,且坐標(biāo)為(3,10).
點(diǎn)評(píng):此題主要考查的是函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)的求法、圖形面積的解法以及直角三角形的判定;最后一題中,先將不可能的情況排除掉可大大的簡(jiǎn)化解答過(guò)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知:如圖,在等腰三角形ABC中,∠A=90°,∠ABC的平分線(xiàn)BD與AC交于點(diǎn)D,DE⊥BC于點(diǎn)E.求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春)感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線(xiàn)AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線(xiàn)段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求證:△ABD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線(xiàn),∠ABC的平分線(xiàn)BG,交AD于點(diǎn)E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線(xiàn)交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰三角形ABC中,AB=AC,∠A=40°,線(xiàn)段AB的垂直平分線(xiàn)交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE,則∠CBE等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案