【題目】已知點(diǎn)P(2x,3x﹣1)是平面直角坐標(biāo)系上的點(diǎn).
(1)若點(diǎn)P在第一象限的角平分線上,求x的值;
(2)若點(diǎn)P在第三象限,且到兩坐標(biāo)軸的距離和為11,求x的值.

【答案】
(1)解:由題意得,2x=3x﹣1,

解得x=1;


(2)解:由題意得,﹣2x+[﹣(3x﹣1)]=11,

則﹣5x=10,

解得x=﹣2.


【解析】(1)根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得第一象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相等,然后列出方程求解即可;(2)根據(jù)第三象限的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)都是負(fù)數(shù),然后列出方程求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)O是BC的中點(diǎn),連接AO,在AO的延長(zhǎng)線上取一點(diǎn)D,連接BD,CD

(1)求證:ABD≌△ACD;

(2)當(dāng)AO與AD滿足什么數(shù)量關(guān)系時(shí),四邊形ABDC是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(﹣1,4),B(2,n)兩點(diǎn),直線AB交x軸于點(diǎn)D.

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過點(diǎn)B作BCy軸,垂足為C,連接AC交x軸于點(diǎn)E,求AED的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于多項(xiàng)式﹣2x2+8x+5的說法正確的是( 。

A. 有最大值13 B. 有最小值﹣3 C. 有最大值37 D. 有最小值1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x軸上的點(diǎn)P到y(tǒng)軸的距離為3,則點(diǎn)P的坐標(biāo)為(
A.(3,0)
B.(0,3)
C.(0,3)或(0,﹣3)
D.(3,0)或(﹣3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:線段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙兩同學(xué)的作業(yè):

甲:(1)以點(diǎn)C為圓心,AB長(zhǎng)為半徑畫;

(2)以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫;

(3)兩弧在BC上方交于點(diǎn)D,連接AD,CD,四邊形ABCD即為所求(如圖1)

乙:(1)連接AC,作線段AC的垂直平分線,交AC于點(diǎn)M;

(2)連接BM并延長(zhǎng),在延長(zhǎng)線上取一點(diǎn)D,使MD=MB,連接AD,CD,四邊形ABCD即為所求(如圖2).

對(duì)于兩人的作業(yè),下列說法正確的是( 。

A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì),乙不對(duì) D. 甲不對(duì),乙對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:﹣4x3+4x2y﹣xy2=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于0.000 002 5米的顆粒物,將0.000 002 5用科學(xué)記數(shù)法表示為( 。

A0.25×10-5 B2.5×10-5 C.2.5×10-6 D.2.5×10-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為10,8,沿直線OD折疊矩形,使點(diǎn)A正好落在BC上的E處,E點(diǎn)坐標(biāo)為6,8,拋物線y=ax2+bx+c經(jīng)過O、A、E三點(diǎn).

1求此拋物線的解析式;

2求AD的長(zhǎng);

3點(diǎn)P是拋物線對(duì)稱軸上的一動(dòng)點(diǎn),當(dāng)PAD的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案