精英家教網(wǎng)如圖,AD是⊙O的切線,D為切點,過點A引⊙O的割線ABC,依次交⊙O于點B和點C,若AC=4,AD=2,則AB等于( 。
A、
1
2
B、1
C、
2
D、2
分析:已知AC、AD的長,可直接利用切割線定理求出AB的長.
解答:解:根據(jù)切割線定理得AD2=AB•AC,
∵AC=4,AD=2;
∴AB=AD2÷AC=1.故選B.
點評:此題主要考查的是切割線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是圓O的直徑,BC切圓O于點D,AB,AC與圓O相交于點E,F(xiàn).求證:AE•AB=AF•AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,ABCD是⊙O的內(nèi)接四邊形,延長AB和DC相交于E,延長AB和DC相交于E,延長AD和BC相交于F,EP和FQ分別切⊙O于P、Q.求證:EP2+FQ2=EF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,AB是⊙O的直徑,直線EF切⊙O于點B,點C和點D是⊙O上的兩點,若∠CBE=40°,AD=CD,則∠BCD=
115
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,BC切⊙O于B,弦AD∥OC,OC交⊙O于E.
(Ⅰ)求證:CD是⊙O的切線;
(Ⅱ)若BC=4,CE=2.求AB和AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AD是半圓O的直徑,AB、CD與半圓O切于點A、D,E為半圓O上一點,過點E的直線交AB于點B,交CD交點C,且CD=CE.
(1)求證:CB是半圓O的切線;
(2)如果AB=4,CD=9,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案