在平面直角坐標(biāo)系中有四點(diǎn),其中三點(diǎn)坐標(biāo)分別為A(-2,1),B(-3,-1),C(1,-1).若以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,那么點(diǎn)D的坐標(biāo)不可能是


  1. A.
    (2,1)
  2. B.
    (-6,1)
  3. C.
    (1,-3)
  4. D.
    (0,-3)
C
分析:根據(jù)平行四邊形的性質(zhì)可知,平行四邊形的對(duì)比平行且相等,故連接各個(gè)頂點(diǎn),數(shù)形結(jié)合,可以作出D點(diǎn)可能的位置,故可以確定D點(diǎn)可能的坐標(biāo),利用排除法,確定答案.
解答:如圖:
∴點(diǎn)D的坐標(biāo)可能為(2,1),(-6,1),(0,3).

故選C.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì):平行四邊形的對(duì)邊平行且相等.解此題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、在平面直角坐標(biāo)系中有兩點(diǎn):A(-2,3),B(4,3),C是坐標(biāo)軸x軸上一點(diǎn),若△ABC是直角三角形,則滿足條件的點(diǎn)C共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中有一直角梯形OABC,∠AOC=90°,AB∥OC,OC精英家教網(wǎng)在x軸上,過(guò)A、B、C三點(diǎn)的拋物線表達(dá)式為y=-
1
18
x2+
4
9
x+10

(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)如果在梯形OABC內(nèi)有一矩形MNPO,使M在y軸上,N在BC邊上,P在OC邊上,當(dāng)MN為多少時(shí),矩形MNPO的面積最大?最大面積是多少?
(3)若用一條直線將梯形OABC分為面積相等的兩部分,試說(shuō)明你的分法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中有兩點(diǎn)P(-1,1),Q (2,2),函數(shù)y=kx-1的圖象與線段PQ延長(zhǎng)線相交(交點(diǎn)不包括Q),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中有一個(gè)Rt△OAC,點(diǎn)A(3,4),點(diǎn)C(3,0)將其沿直線AC翻折,翻折后圖形為△BAC.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線0?A?B的方向以每秒2個(gè)單位的速度向B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),在線段BO上以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(2)如圖2,固定△OAC,將△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△A′CB′設(shè)A′B′與AC交于點(diǎn)D當(dāng)∠BCB′=∠CAB時(shí),求線段CD的長(zhǎng);
(3)如圖3,在△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過(guò)程中,若設(shè)A′C所在直線與OA所在直線的交點(diǎn)為E,是否存在點(diǎn)E使△ACE為等腰三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.精英家教網(wǎng)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中有一個(gè)平行四邊形ABCD,如果將此平行四邊形沿x軸正方向移動(dòng)3個(gè)單位,則各點(diǎn)坐標(biāo)的變化特征是怎樣的?

查看答案和解析>>

同步練習(xí)冊(cè)答案