【題目】在⊙O中,AB是直徑,AC是切線且AC=AB,聯(lián)結BC交⊙O于點D,試僅用無刻度直尺,作以D為切點的⊙O的切線DT.
【答案】解:如圖所示:
【解析】解:如圖所示,連接CO、AD交于點F,連接BF并延長交AC于點E,過點D,E作直線DT,連接OD,則直線DT即為所求.
∵AB是⊙O的直徑,AC是⊙O的切線,
∴AC⊥AB,
又∵AC=AB,
∴△ABC是等腰直角三角形,
連接AD,CO,交于點F,則AD⊥BC,
∴點D是BC的中點,
又∵O是AB的中點,
∴點F是△ABC的重心,
連接BF并延長,交AC于E,則E是AC的中點,
∴BE是△ABC的中線,
由題意知,△ABD、△ACD都是等腰直角三角形,
∴OD⊥AB,DE⊥AC,
又∵AB⊥AC,
∴∠ODE=90°,
∴DE是⊙O的切線.
先連接AD,CO,交于點F,則點F為△ABC的重心,連接BF并延長,交AC于E,則E是AC的中點,BE是△ABC的中線,過點D,E作直線DT,連接OD,則直線DT即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組10名學生在一次數(shù)學測試中的成績?nèi)绫恚M分150分)
分數(shù)(單位:分) | 105 | 130 | 140 | 150 |
人數(shù)(單位:人) | 2 | 4 | 3 | 1 |
下列說法中,不正確的是( )
A.這組數(shù)據(jù)的眾數(shù)是130
B.這組數(shù)據(jù)的中位數(shù)是130
C.這組數(shù)據(jù)的平均數(shù)是130
D.這組數(shù)據(jù)的方差是112.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交BC于點D,過點D作EF⊥AC于點F,交AB的延長線于點E.
(1)求證:EF是⊙O的切線;
(2)當BD=3,DF= 時,求直徑AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】4月的某天小欣在“A超市”買了“雀巢巧克力”和“趣多多小餅干”共10包,已知“雀巢巧克力”每包22元,“趣多多小餅干”每包2元,總共花費了80元.
(1)請求出小欣在這次采購中,“雀巢巧克力”和“趣多多小餅干”各買了多少包?
(2)“五一”期間,小欣發(fā)現(xiàn),A、B兩超市以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在A超市累計購物超過50元后,超過50元的部分打九折;在B超市累計購物超過100元后,超過100元的部分打八折.
①請問“五一”期間,若小欣購物金額超過100元,去哪家超市購物更劃算?
②“五一”期間,小欣又到“B超市”購買了一些“雀巢巧克力”,請問她至少購買多少包時,平均每包價格不超過20元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=60°,M、N分別是AD、BC的中點,BC=2CD.
(1)求證:四邊形MNCD是平行四邊形;
(2)求證:BD=MN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(聊城臨清市期末)如圖,四邊形ABCD中,AB=CD,對角線AC,BD交于點O,下列條件中不能說明四邊形ABCD是平行四邊形的是( )
A. AD=BC B. AC=BD
C. AB∥CD D. ∠BAC=∠DCA
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級某班級部分同學去植樹,若每人平均植樹7棵,還剩9棵,若每人平均植樹9棵,則有1位同學植樹的棵數(shù)不到8棵.若設同學人數(shù)為x人,植樹的棵數(shù)為(7x+9)棵,下列各項能準確的求出同學人數(shù)與種植的樹木的數(shù)量的是( )
A. 7x+9≤8+9(x﹣1) B. 7x+9≥9(x﹣1)
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com