【題目】如圖1,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)在軸上,點(diǎn)在軸上,,,過(guò)點(diǎn)的直線交矩形的邊于點(diǎn),且點(diǎn)不與點(diǎn)、重合,過(guò)點(diǎn)作,交軸于點(diǎn),交軸于點(diǎn).
(Ⅰ)若為等腰直角三角形.
①直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo):______;直線的解析式為______;
②在軸上另有一點(diǎn)的坐標(biāo)為,請(qǐng)?jiān)谥本和軸上分別找一點(diǎn)、,使的周長(zhǎng)最小,并求出此時(shí)點(diǎn)的坐標(biāo)和周長(zhǎng)的最小值.
(Ⅱ)如圖2,過(guò)點(diǎn)作交軸于點(diǎn),若以、、、為頂點(diǎn)的四邊形是平行四邊形,求直線的解析式.
【答案】(1)①, ;②周長(zhǎng)的最小值為;(Ⅱ)直線解析式.
【解析】
(1)①直接根據(jù)條件就可以求出點(diǎn)和解析式.
②作點(diǎn)關(guān)于軸對(duì)稱點(diǎn),作點(diǎn)關(guān)于直線對(duì)稱點(diǎn)連接交軸于,交直線于,求出直線解析式,再根據(jù)條件求出最小周長(zhǎng).
(2) 作于,,先求出,再求出E,P兩點(diǎn)的坐標(biāo),再列解析式.
(1)①,∴直線解析式;
②作點(diǎn)關(guān)于軸對(duì)稱點(diǎn),作點(diǎn)關(guān)于直線對(duì)稱點(diǎn)連接交軸于,交直線于,此時(shí)周長(zhǎng)的最小,
∵,,
∴直線解析式,
當(dāng)時(shí),,
∴,
∵,
∴周長(zhǎng)的最小值為;
(Ⅱ)如圖:作于,
∵,
∴且,
∴,且,
∴,
∵四邊形是平行四邊形,
∴.
又∵,,
∴,
∴,,
∴,
∵,,
∴,,
∴,,
設(shè)直線的解析式,
,
∴,
∴直線解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們都知道,表示5與 -2之差的絕對(duì)值,實(shí)際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離,則使得這樣的整數(shù)有____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一次函數(shù),我們稱函數(shù)
為它的m分函數(shù)(其中m為常數(shù)).
例如,的4分函數(shù)為:當(dāng)時(shí),;當(dāng)時(shí),.
(1)如果的2分函數(shù)為,
① 當(dāng)時(shí), ; ②當(dāng)時(shí), .
(2)如果的-1分函數(shù)為,求雙曲線與的圖象的交點(diǎn)坐標(biāo);
(3)從下面兩問(wèn)中任選一問(wèn)作答:
①設(shè)y=x+2的m分函數(shù)為y ,如果拋物線y=x與y的圖象有且只有一個(gè)公共點(diǎn),直接寫(xiě)出m的取值范圍。
②如果點(diǎn)A(0,t)到y=x+2的0分函數(shù)y[0]的圖象的距離小于1,直接寫(xiě)出t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將正方形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,其余各邊均與坐標(biāo)軸平行,直線l:y=x﹣3沿x軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t(秒),m與t的函數(shù)圖象如圖2所示,則圖2中b的值為( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)定義運(yùn)算:對(duì)于任意有理數(shù)a、b,都有ab=ab-b,如:23=2×3-3,請(qǐng)根據(jù)以上定義解答下列各題:
(1) 2(-3)=___________,x(-2)=___________;
(2) 化簡(jiǎn):[(-x)3] (-2);
(3) 若x =3(-x),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有、兩個(gè)點(diǎn)對(duì)應(yīng)的數(shù)分別是、,且滿足;
(1)求、的值;
(2)點(diǎn)是數(shù)軸上、之間的一個(gè)點(diǎn),使得,求出點(diǎn)所對(duì)應(yīng)的數(shù);
(3)點(diǎn),點(diǎn)為數(shù)軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)從點(diǎn)以3個(gè)單位長(zhǎng)度每秒的速度向右運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)以2個(gè)單位長(zhǎng)度每秒的速度向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,若,求時(shí)間的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)E是BC邊上任意一點(diǎn),分別向BD、AC作垂線,垂足分別為F、G,則四邊形OFEG的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.
(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com