【題目】如圖,在ABCD中,DE是∠ADC的平分線,交BC于點(diǎn)E.

(1)試說明CD=CE;

(2)若BE=CE,∠B=80°,求∠DAE的度數(shù).

【答案】(1)答案見解析;(2) 50°

【解析】

試題(1)由平行四邊形的性質(zhì)可得ADBC,由平行線的性質(zhì)得出和角平分線得出∠DEC=CDE,根據(jù)等角對(duì)等邊可得CD=CE
(2)證出BE=AB,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出,再由平行線的性質(zhì)即可得出

試題解析:(1)證明:∵四邊形ABCD是平行四邊形,

AB=CD,ADBC,

∴∠ADE=DEC,

DE是∠ADC的平分線,

∴∠ADE=CDE,

∴∠DEC=CDE

CD=CE;

(2)BE=CECD=CE,

BE=CD

AB=CD,

BE=AB

ADBC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線ABCD交于點(diǎn)O,是方程的解,也是方程的解,且,

1)求的度數(shù).

2)若射線OMOC出發(fā),繞點(diǎn)O的速度順時(shí)針轉(zhuǎn)動(dòng),射線ONOD出發(fā),繞點(diǎn)O的速度逆時(shí)針第一次轉(zhuǎn)動(dòng)到射線OE停止,當(dāng)ON停止時(shí),OM也隨之停止.在轉(zhuǎn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),?

3)在(2)的條件下,當(dāng)ON運(yùn)動(dòng)到內(nèi)部時(shí),下列結(jié)論:①不變;②不變,其中只有一個(gè)是正確的,請(qǐng)選擇并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)B落在點(diǎn)B',則重疊部分的面積為()

A.12B.10C.8D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價(jià)應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外球類特色的體育活動(dòng),決定開設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問題.

1)樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;

2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校有學(xué)生3000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡足球的學(xué)生人數(shù)約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAOB,引射線OC(點(diǎn)C在∠AOB外),若∠BOCα0°<α90°),

OD平∠BOC,OE平∠AOD

1)若α40°,請(qǐng)依題意補(bǔ)全圖形,并求∠BOE的度數(shù);

2)請(qǐng)根據(jù)∠BOCα,求出∠BOE的度數(shù)(用含α的表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面內(nèi)已知,、分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】客運(yùn)公司規(guī)定旅客可免費(fèi)攜帶一定質(zhì)量的行李,當(dāng)行李質(zhì)量超過規(guī)定時(shí),需付的行李費(fèi)y(元)是行李質(zhì)量xkg)的一次函數(shù),且部分對(duì)應(yīng)關(guān)系如表所示.

xkg

30

40

50

y(元)

4

6

8

1)求y關(guān)于x的函數(shù)表達(dá)式;

2)求旅客最多可免費(fèi)攜帶行李的質(zhì)量;

3)當(dāng)行李費(fèi)2≤y≤7(元)時(shí),可攜帶行李的質(zhì)量xkg)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為( 。

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

同步練習(xí)冊(cè)答案