【題目】題目:如圖,直線a,b被直線所截,若∠1+∠7=180°,則a∥b.在下面說理過程中的括號里填寫說理依據(jù).
方法一:∵∠1+∠7=180°(已知)
而∠1+∠3=180°(平角定義)
∴∠7=∠3()
∴a∥b()
方法二::∵∠1+∠7=180°(已知)
∠1+∠3=180°(平角定義)
∴∠7=∠3()
又∠7=∠6()
∴∠3=∠6()
∴a∥b()
方法三::∵∠1+∠7=180°(已知)
而∠1=∠4,∠7=∠6()
∠4+∠6=180°(平角定義)
∴a∥b()
【答案】同角的補角相等;同位角相等,兩直線平行;同角的補角相等;對頂角相等;等量代換;內(nèi)錯角相等,兩直線平行;頂角相等;同旁內(nèi)角互補,兩直線平行
【解析】解:方法一:∵∠1+∠7=180°(已知)
而∠1+∠3=180°(平角定義)
∴∠7=∠3(同角的補角相等)
∴a∥b(同位角相等,兩直線平行)
方法二:∵∠1+∠7=180°(已知)
∠1+∠3=180°(平角定義)
∴∠7=∠3(同角的補角相等)
又∠7=∠6(對頂角相等)
∴∠3=∠6(等量代換)
∴a∥b(內(nèi)錯角相等,兩直線平行)
方法三:∵∠1+∠7=180°(已知)
而∠1=∠4,∠7=∠6(對頂角相等)
∠4+∠6=180°(平角定義)
∴a∥b(同旁內(nèi)角互補,兩直線平行).
故答案是:方法一:同角的補角相等;同位角相等,兩直線平行;
方法二:同角的補角相等;對頂角相等;等量代換;內(nèi)錯角相等,兩直線平行;
方法三:對頂角相等;同旁內(nèi)角互補,兩直線平行.
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質(zhì).
科目:初中數(shù)學 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
(1)請你根據(jù)上圖填寫下表.
銷售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 9 | |||
乙 | 9 | 17.0 | 8 |
(2)請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:①從平均數(shù)和方差結合看;②從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看(分析哪個汽車銷售公司較有潛力).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果兩條直線相交所成的四個角中的任意一個角等于___,那么這兩條直線互相垂直.其中的一條直線叫做另一條直線的_____,它們的交點叫做______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,∠ACD=∠B,AD⊥CD.
(1)求證:CD是⊙O的切線;
(2)若AD=1,OA=2,求AC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(A在B的右側).
(1)當A(4,2)時,求反比例函數(shù)的解析式及B點的坐標;
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)當A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在以下現(xiàn)象中,屬于平移的是( )
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com