【題目】如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙O上一點,連結(jié)PD.已知PC=PD=BC.下列結(jié)論:(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為菱形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,C是⊙O上一點,CO⊥AB于點O,弦CD與AB交于點F,過點D作∠CDE=∠DFE,DE交AB的延長線于點E,過點A作⊙O的切線交ED的延長線于點G.
(1)求證:GE是⊙O的切線;
(2)若tanC=,BE=4,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y=x2+bx+c的圖象向右平移2個單位長度,再向下平移3個單位長度,得到的圖象對應的函數(shù)表達式為y=x2-2x-3.
(1) 求b,c;
(2)求原函數(shù)圖象的頂點坐標;
(3)求兩個圖象頂點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園草坪的防護欄由100段形狀相同的拋物線形構(gòu)件組成,為了牢固起見,每段護欄需要間距0.4m加設(shè)一根不銹鋼的支柱,防護欄的最高點距底部0.5m(如圖),則這條防護欄需要不銹鋼支柱的總長度至少為( 。
A. 50m B. 100m C. 160m D. 200m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.
(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是 事件(填“隨機”、“必然”或“不可能”);
(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com