【題目】如圖,AB為⊙O直徑,C是⊙O上一點,CO⊥AB于點O,弦CD與AB交于點F,過點D作∠CDE=∠DFE,DE交AB的延長線于點E,過點A作⊙O的切線交ED的延長線于點G.
(1)求證:GE是⊙O的切線;
(2)若tanC=,BE=4,求AG的長.
【答案】(1)證明見解析;(2)AG=12.
【解析】
(1)連接,如圖,先證明,再證明,然后利用得到,則,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)設(shè),則,則可表示出,再利用得到,然后在中,根據(jù)勾股定理得到,再解方程求出即可得到結(jié)論.
(1)證明:連接OD,如圖,
∵∠1=∠2,
而∠2=∠3,
∴∠3=∠1,
∵OC⊥AB,
∴∠3+∠C=90°,
∴∠1+∠C=90°,
而OC=OD,
∴∠C=∠4,
∴∠1+∠4=90°,即∠ODE=90°,
∴OD⊥DE,
∴GE是⊙O的切線;
(2)解:設(shè)OF=x,則OC=3x,
∴BF=2x,
∵∠1=∠2,
∴ED=EF=2x+4,
在Rt△ODE中,
∵OD2+DE2=OE2,
∴(3x)2+(2x+4)2=(4+3x)2,解得x=2,
∴OD=6,DE=8,OE=10
又∵△AGE∽△DOE,
AE=16,
可得AG=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且 .下列結(jié)論: ①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④CD2=CECA.其中正確的結(jié)論是________(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請你用列舉法(列表或畫樹狀圖)加以分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50元
(1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知這種水果的進價為每千克40元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應(yīng)漲價多少元才能使每天獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為菱形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點M.
(1)求證:CD與⊙O相切;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)如果點P是x軸上的一點,且△ABP的面積是3,求點P的坐標;
(3)若P是坐標軸上一點,且滿足PA=OA,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為⊙O的直徑BA延長線上的一點,PC與⊙O相切,切點為C,點D是⊙O上一點,連結(jié)PD.已知PC=PD=BC.下列結(jié)論:(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是軸對稱圖形,且直線AC是否對稱軸,AB∥CD,則下列結(jié)論:①AC⊥BD;②AD∥BC;③四邊形ABCD是菱形;④△ABD≌△CDB.其中結(jié)論正確的序號是( )
A. ①②③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com