【題目】如圖,已知l1∥l2,MN分別和直線l1、l2交于點A、B,ME分別和直線l1、l2交于點C、D,點P在MN上(P點與A、B、M三點不重合).
(1)如果點P在A、B兩點之間運動時,∠α、∠β、∠γ之間有何數(shù)量關(guān)系請說明理由;
(2)如果點P在A、B兩點外側(cè)運動時,∠α、∠β、∠γ有何數(shù)量關(guān)系(只須寫出結(jié)論).
【答案】(1)∠α+∠β=∠γ.(2)①P在A點左邊時,∠α﹣∠β=∠γ;②P在B點右邊時,∠β﹣∠α=∠γ.
【解析】分析:(1)根據(jù)平行線的性質(zhì)可求出它們的關(guān)系,從點P作平行線,平行于AC,根據(jù)兩直線平行內(nèi)錯角相等可得出.
(2)分類討論,①點P在點A左邊,②點P在點B右邊.
詳解:(1)如圖,過點P做AC的平行線PO,
∵AC∥PO,
∴∠β=∠CPO,
又∵AC∥BD,
∴PO∥BD,
∴∠α=∠DPO,
∴∠α+∠β=∠γ.
(2)①P在A點左邊時,∠α∠β=∠γ;
②P在B點右邊時,∠β∠α=∠γ.
(提示:兩小題都過P作AC的平行線).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將一塊腰長為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標為 , 點B的坐標為;
(2)拋物線的解析式為;
(3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段的中點坐標為.
(1)如圖(1),C為線段AB中點,A點坐標為(0,4),B點坐標為(5,4),則點C的坐標為
(2)如圖(2),F(xiàn)為線段DE中點,D點坐標為(﹣4,﹣3),E點坐標為(1,﹣3).則點F的坐標為________
應(yīng)用:
(1)如圖(3),長方形ONDF的對角線相交于點M,ON,OF分別在x軸和y軸上,O為坐標原點,點D的坐標為(4,3),則點M的坐標為 ;
(2)在直角坐標系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與A,B,C構(gòu)成平行四邊形的頂點,直接寫出D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,
求:(1)在圖(1)中∠B+∠D=?(2)在圖(2)中∠B+∠E1+∠D=?(3)在圖(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此規(guī)律,將△OAB進行n次變換,得到△OAnBn。推測An的坐標是___________,Bn的坐標是___________。( )
A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周長等于AB+BC;(4)D是AC中點.其中正確的命題序號是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(3)當兩車相距120千米時,乙車行駛了多長時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com