【題目】如圖,圖1是某倉(cāng)庫(kù)的實(shí)物圖片,圖2是該倉(cāng)庫(kù)屋頂(虛線部分)的正面示意圖,BE、CF關(guān)于AD軸對(duì)稱(chēng),且AD、BE、CF都與EF垂直,AD=3米,在B點(diǎn)測(cè)得A點(diǎn)的仰角為30°,在E點(diǎn)測(cè)得D點(diǎn)的仰角為20°,EF=6米,求BE的長(zhǎng).(結(jié)果精確到0.1米,參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.73)
【答案】BE的長(zhǎng)約為2.4米.
【解析】延長(zhǎng)AD交EF于點(diǎn)M,過(guò)B作BN⊥AD于點(diǎn)N,可證四邊形BEMN為矩形,分別在Rt△ABN和Rt△DEM中求出AN、DM的長(zhǎng)度,即可求得BE=MN=AD-AN+DM的長(zhǎng)度.
解:延長(zhǎng)AD交EF于點(diǎn)M,過(guò)B作BN⊥AD于點(diǎn)N,
∵BE、CF關(guān)于AD軸對(duì)稱(chēng),且AD、BE、CF都與EF垂直,
∴四邊形BEMN為矩形,EM=MF=EF=3米,
∴BN=EM=3米,BE=MN,
在Rt△ABN中,
∵∠ABN=30°,BN=3米,=tan30°,
∴AN=BNtan30°=3×=(米),
在Rt△DEM中,
∵∠DEM=20°,EM=3米,=tan20°,
∴DM=EMtan20°≈3×0.36=1.08(米),
∴BE=MN=(AD-AN)+DM=3-+1.08≈3-1.73+1.08=2.35≈2.4(米).
答:BE的長(zhǎng)度為2.4米.
“點(diǎn)睛”本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角和俯角的知識(shí)構(gòu)造直角三角形,運(yùn)用解直角三角形的知識(shí)分別求出AN、DM的長(zhǎng)度,難度適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校九年級(jí)學(xué)生舉行朗誦比賽,全年級(jí)學(xué)生都參加,學(xué)校對(duì)表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置一、二、三等獎(jiǎng)各進(jìn)步獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將九年級(jí)(1)班的獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)九年級(jí)(1)班共有 名學(xué)生;
(2)將條形圖補(bǔ)充完整:在扇形統(tǒng)計(jì)圖中,“二等獎(jiǎng)”對(duì)應(yīng)的扇形的圓心角度數(shù)是 ;
(3)如果該九年級(jí)共有1250名學(xué)生,請(qǐng)估計(jì)榮獲一、二、三等獎(jiǎng)的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(n,m)在第一象限,AB⊥x軸于B,AC⊥y軸于C,(m﹣3)2+n2﹣6n+9=0,過(guò)C點(diǎn)作∠ECF分別交線段AB、OB于E、F兩點(diǎn).
(1)求m、n的值并寫(xiě)出A、B、C三點(diǎn)的坐標(biāo);
(2)若OF+BE=AB,求證:CF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】y=(m-1)x|m|+3m表示一次函數(shù),則m等于( )
A. 1 B. -1 C. 0或-1 D. 1或-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)、C(0,3)三點(diǎn)。
(1)求拋物線的解析式。
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線于N若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng)。
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一個(gè)正五邊形繞它的中心旋轉(zhuǎn),至少旋轉(zhuǎn)______度,就能與原來(lái)的位置重合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com