如圖,點(diǎn)DAC上一點(diǎn),點(diǎn)O為邊AB上一點(diǎn),ADDO.以O為圓心,OD長(zhǎng)為半

徑作圓,交AC于另一點(diǎn)E,交AB于點(diǎn)F,G,連接EF.若
BAC=22°,則∠EFG_  ▲  
33°
連接OE,利用三角形的外角性質(zhì)得出∠ODC的度數(shù),再求出∠DOC,從而求出∠EOG的度數(shù),再利用圓周角定理求出∠EFG的度數(shù).
解:連接EO,

∵AD=DO,
∴∠BAC=∠DOA=22°,
∴∠EDO=44°,
∵DO=EO,
∴∠OED=∠ODE=44°,
∴∠DOE=180°-44°-44°=92°,
∴∠EOG=180°-92°-22°=66°,
∴∠EFG=1/2∠EOG=33°,
故答案為:33°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)如圖①,小慧同學(xué)把一個(gè)正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)120°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將三角形紙片AO1B1繞點(diǎn)B1按順時(shí)針方向旋轉(zhuǎn)120°,此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A1處,點(diǎn)O1運(yùn)動(dòng)到了點(diǎn)O2處(即頂點(diǎn)O經(jīng)過上述兩次旋轉(zhuǎn)到達(dá)O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是兩段
圓弧,即,頂點(diǎn)O所經(jīng)過的路程是這兩段圓弧的長(zhǎng)度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進(jìn)行類比研究:如圖②,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點(diǎn)^按順時(shí)針方向旋轉(zhuǎn)90°,此時(shí)點(diǎn)O運(yùn)動(dòng)到
了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將正方形
紙片AO1C1B1繞頂點(diǎn)B1按順時(shí)針方向旋轉(zhuǎn)90°,……,按上述方法經(jīng)過若干次旋轉(zhuǎn)后.她
提出了如下問題:
問題①:若正方形紙片OABC接上述方法經(jīng)過3次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過的路程,并
求頂點(diǎn)O在此運(yùn)動(dòng)過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過的路程是
?
請(qǐng)你解答上述兩個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•桂林)如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心,AC長(zhǎng)為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若,且AC=4,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

邊長(zhǎng)為2的兩種正方形卡片如圖①所示,卡片中的扇形半徑均為2.圖②是交替擺放A、B兩種卡片得到的圖案.若擺放這個(gè)圖案共用兩種卡片21張,則這個(gè)圖案中陰影部分圖形的面積和為      (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知:如圖,在中,的角平分線邊于
(1)以邊上一點(diǎn)為圓心,過兩點(diǎn)作(不寫作法,保留作圖痕跡),再判斷直線的位置關(guān)系,并說明理由;
(2)若(1)中的邊的另一個(gè)交點(diǎn)為,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號(hào)和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,AM切⊙O于點(diǎn)A,BDAM于點(diǎn)DBD交⊙O

于點(diǎn)C,OC平分∠AOB.求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,以為直徑,為圓心的半圓交于點(diǎn),點(diǎn)的中點(diǎn),連接于點(diǎn),的角平分線,且,垂足為點(diǎn)。

(1) 求證:是半圓的切線;
(2) 若,,求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•泰安)一圓錐的側(cè)面展開圖是半徑為2的半圓,則該圓錐的全面積是(  )
A.5πB.4π
C.3πD.2π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,內(nèi)接于圓,,是圓的直徑, 于點(diǎn),連結(jié),則等于
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案