【題目】為了弘揚(yáng)優(yōu)秀傳統(tǒng)文化,某校組織了一次詩(shī)詞大會(huì),小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩(shī),其答案為兩個(gè)黃鸝鳴翠柳”.

(1)小明回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選個(gè)還是選難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是__________;

(2)小麗回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選個(gè)還是選、第五個(gè)字是選還是選都難以抉擇,若分別隨機(jī)選擇,請(qǐng)用列表或畫樹狀圖的方法求小麗回答正確的概率.

【答案】(1);(2)小麗回答正確的概率為

【解析】

(1)利用概率公式直接計(jì)算即可;

(2)畫出樹狀圖得到所有可能的結(jié)果,再找到回答正確的數(shù)目即可求出小麗回答正確的概率.

對(duì)第二個(gè)字是選個(gè)還是選難以抉擇,

若隨機(jī)選擇其中一個(gè)正確的概率,

故答案為:;

畫樹形圖得:

由樹狀圖可知共有4種可能結(jié)果,其中正確的有1種,

所以小麗回答正確的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).

1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△DEF(其中DE、F分別是A、B、C的對(duì)應(yīng)點(diǎn)).

2)直接寫出(1)中F點(diǎn)的坐標(biāo)為   

3)若直線l經(jīng)過(guò)點(diǎn)(0,﹣2)且與x軸平行,則點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為   

4)在y軸上存在一點(diǎn)P,使PCPB最大,則點(diǎn)P的坐標(biāo)為   

5)第一象限有一點(diǎn)M4,2),在x軸上找一點(diǎn)Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)y=﹣2x2+4x+m+1,與x軸的公共點(diǎn)為A,B.

(1)如果AB重合,求m的值;

(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn):

當(dāng)m=﹣1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);

若設(shè)拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù)為n,當(dāng)1<n≤8時(shí),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在等邊△ABC,點(diǎn)E為邊AB上任意一點(diǎn),點(diǎn)D在邊CB的延長(zhǎng)線上,EDEC.

(1)當(dāng)點(diǎn)EAB的中點(diǎn)時(shí)(如圖1),則有AE DB(填“”“”或“)

(2)猜想AEDB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說(shuō)明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩家運(yùn)輸公司規(guī)定每位旅客攜帶行李的費(fèi)用與所帶行李質(zhì)量之間的關(guān)系圖.

1)由圖可知,行李質(zhì)量只要不超過(guò)______kg,甲公司就可免費(fèi)攜帶,如果超過(guò)了規(guī)定的質(zhì)量,則每超過(guò)1 kg要付運(yùn)費(fèi)_______元;

2)若設(shè)旅客攜帶的行李質(zhì)量為x(kg),所付的行李費(fèi)是y(元),請(qǐng)分別寫出y甲與y乙(元)隨x(kg)之間變化的關(guān)系式;

3)若你準(zhǔn)備攜帶45 kg的行李出行,在甲、乙兩家公司中你會(huì)選擇哪一家?應(yīng)付行李費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是菱形的對(duì)角線、的交點(diǎn),、分別是、的中點(diǎn).下列結(jié)論:①②四邊形也是菱形;③四邊形的面積為;是軸對(duì)稱圖形.其中正確的結(jié)論有( )

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在矩形ABCD中,AD=2AB,EAB延長(zhǎng)線上一點(diǎn),且BE=AB,連接DE,交BC于點(diǎn)M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AMDE的位置關(guān)系.

探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:

證明:∵BE=AB,∴AE=2AB.

∵AD=2AB,∴AD=AE.

四邊形ABCD是矩形,∴AD∥BC.

.(依據(jù)1)

∵BE=AB,∴.∴EM=DM.

AM△ADEDE邊上的中線,

∵AD=AE,∴AM⊥DE.(依據(jù)2)

∴AM垂直平分DE.

反思交流:

(1)①上述證明過(guò)程中的依據(jù)1”“依據(jù)2”分別是指什么?

試判斷圖1中的點(diǎn)A是否在線段GF的垂直平分線上,請(qǐng)直接回答,不必證明;

(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點(diǎn)G在線段BC的垂直平分線上,請(qǐng)你給出證明;

探索發(fā)現(xiàn):

(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C,點(diǎn)B都在線段AE的垂直平分線上,除此之外,請(qǐng)觀察矩形ABCD和正方形CEFG的頂點(diǎn)與邊,你還能發(fā)現(xiàn)哪個(gè)頂點(diǎn)在哪條邊的垂直平分線上,請(qǐng)寫出一個(gè)你發(fā)現(xiàn)的結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BCAB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案