如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB=2.若將⊙P向上平移,則⊙P與x軸相切時點P坐標為( )

A.(3,2)
B.(3,3)
C.(3,4)
D.(3,5)
【答案】分析:P移到P′點時,⊙P與x軸相切,過P作直徑MN⊥AB與D,連接AP,由垂徑定理求出AD,根據(jù)勾股定理求出AP、P′D,即可得出P′DE 坐標,即可得出答案.
解答:解:
當P移到P′點時,⊙P與x軸相切,
過P作直徑MN⊥AB與D,連接AP,
由垂徑定理得:AD=BD=AB=,
∵DP=|-1|=1,
由勾股定理得:AP==2,
∴PP′=2+1=3,
∵P(3,-1),
∴P′的坐標是(3,2),
故選A.
點評:本題考查了垂徑定理,勾股定理,切線的性質(zhì)等知識點的應用,能理解題意畫出圖形和正確作出輔助線是解此題的關鍵,題目比較典型.主要培養(yǎng)學生的分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉90°,則點O的對應點C的坐標為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案