【題目】學(xué)習(xí)新知:如圖 1、圖 2,是矩形所在平面內(nèi)任意一點(diǎn),則有以下重要結(jié)論: .該結(jié)論的證明不難,同學(xué)們通過(guò)勾股定理即可證明.

應(yīng)用新知:如圖 3,在中,,, 內(nèi)一點(diǎn),且,,則的最小值為__________

【答案】

【解析】

過(guò)點(diǎn)AAEAD,過(guò)點(diǎn)BBEBD,AEBE交于點(diǎn)E,連接DE、CE,如圖,則易得四邊形ADBE為矩形,可得AB=DE,于是求的最小值就轉(zhuǎn)化為求DE的最小值,由題意中的結(jié)論知,于是CE的長(zhǎng)可求,然后再根據(jù)三角形的三邊關(guān)系可得當(dāng)C、D、E三點(diǎn)共線時(shí),DE取得最小值,問(wèn)題即得解決.

解:過(guò)點(diǎn)AAEAD,過(guò)點(diǎn)BBEBD,AEBE交于點(diǎn)E,連接DECE,如圖,

則四邊形ADBE為矩形,∴AB=DE,

由題意中的結(jié)論知:,即,

解得:,

在△CDE中,由三角形的三邊關(guān)系可得:,

∴當(dāng)C、D、E三點(diǎn)共線時(shí),,此時(shí)DE取最小值為,

的最小值為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,點(diǎn)EF分別在直線AB、CD,EPF=90°,∠BEP=GEP,則∠1與∠2的數(shù)量關(guān)系為( )

A. 1=2B. 1=22C. 1=32D. 1=42

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是拋物線y=x2在第一象限內(nèi)的一點(diǎn)點(diǎn)A的坐標(biāo)是(3,0).設(shè)點(diǎn)P的坐標(biāo)為(x,y).

(1)求△OPA的面積S關(guān)于變量y的關(guān)系式;

(2)S是x的什么函數(shù)?

(3)當(dāng)S=6時(shí),求點(diǎn)P的坐標(biāo);

(4)在y=x2的圖象上求一點(diǎn)P′,使△OP′A的兩邊OP′=P′A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A0a),Bb,0),其中a,b滿足|a﹣2|+b﹣32=0

1)求ab的值;

2)如果在第二象限內(nèi)有一點(diǎn)Mm,1),請(qǐng)用含m的式子表示四邊形ABOM的面積;

3)在(2)條件下,當(dāng)m= 時(shí),在坐標(biāo)軸的負(fù)半軸上是否存在點(diǎn)N,使得四邊形ABOM的面積與△ABN的面積相等?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列4個(gè)結(jié)論:abc<0;b<a+c;4a+2b+c>0;b2﹣4ac>0其中正確結(jié)論的有( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,∠AGF=∠ABC,∠1+2180°

(1)試判斷BFDE的位置關(guān)系?并說(shuō)明理由;

(2)如果,DEAC,∠2150°,求∠AFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:

如圖,∠1+2180°,∠A=∠C,試說(shuō)明:AEBC

解:因?yàn)椤?/span>1+2180°,

所以AB   (同旁內(nèi)角互補(bǔ),兩直線平行)

所以∠A=∠EDC(   ),

又因?yàn)椤?/span>A=∠C(已知)

所以∠EDC=∠C(等量代換),

所以AEBC(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;四邊形ACED是菱形.

其中正確的個(gè)數(shù)是( )

A0 B1 C2 D3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校帶領(lǐng)學(xué)生演出,參加演出的女生人數(shù)是男生人數(shù)的2倍少100人,學(xué)校需要采購(gòu)一批演出服裝.經(jīng)了解:兩家制衣公司生產(chǎn)的這款演出服裝的用料相同,單位也一樣,男裝都是120元一套,女裝都是100元一食. 經(jīng)洽談協(xié)商:公司給出的優(yōu)惠條件是全部服裝按單位打七折,但校方需承擔(dān)2200元的運(yùn)費(fèi);公司的優(yōu)惠條件是男女裝均按每套100元且打八折,公司承擔(dān)運(yùn)費(fèi).如果設(shè)參加演出的男生有.

1)分別寫出學(xué)校購(gòu)買兩公司服裝所付的總費(fèi)用(元)和(元)與參演男生人數(shù)(人)之間的函數(shù)關(guān)系式;

2)當(dāng)參演男生人數(shù)是100人時(shí),學(xué)校選用哪家制衣公司合算?當(dāng)參演男生人數(shù)是300人時(shí),學(xué)校選用哪家制衣公司合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案