某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出AB=AF,∠BAM=∠FAN,進而得出△ABM≌△AFN得出答案即可;
(2)利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=120°,∠FPC=∠B=60°,即可得出四邊形ABPF是平行四邊形,再利用菱形的判定得出答案.
解答:(1)證明:∵用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),
∴AB=AF,∠BAM=∠FAN,
在△ABM和△AFN中,

∴△ABM≌△AFN(ASA),
∴AM=AN;

(2)解:當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是菱形.
理由:連接AP,
∵∠α=30°,
∴∠FAN=30°,
∴∠FAB=120°,
∵∠B=60°,
∴AF∥BP,
∴∠F=∠FPC=60°,
∴∠FPC=∠B=60°,
∴AB∥FP,
∴四邊形ABPF是平行四邊形,
∵AB=AF,
∴平行四邊形ABPF是菱形.
點評:此題主要考查了平行四邊形的判定以及菱形的判定和全等三角形的判定等知識,根據(jù)旋轉(zhuǎn)前后圖形大小不發(fā)生變化得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婁底)某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江西省九年級3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABCAFE按如圖(1)所示位置放置放置,現(xiàn)將RtAEFA點按逆時針方向旋轉(zhuǎn)角αα90°),如圖(2),AEBC交于點M,ACEF交于點N,BCEF交于點P

1)求證:AM=AN

2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖南婁底卷)數(shù)學(xué)(解析版) 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖

(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.

(1)求證:AM=AN;

(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校九年級學(xué)習(xí)小組在探究學(xué)習(xí)過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當(dāng)旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案