【題目】如圖,在Rt△ABC中,點E在AB上,把△ABC沿CE折疊后,點B恰好與斜邊AC的中點D重合.
(1)求證:△ACE為等腰三角形;
(2)若AB=6,求AE的長.
【答案】(1)見解析;(2)4.
【解析】
(1)根據(jù)折疊的性質(zhì)可得CD=CB,∠CDE=∠B=90°,再利用SAS即可證明△ADE≌△CDE,進一步即可證得結(jié)論;
(2)由折疊的性質(zhì)和(1)的結(jié)論可得∠AED=∠DEC=∠BEC=60°,進而可得∠BCE=30°,然后利用30°角的直角三角形的性質(zhì)即得BE與CE的關(guān)系,進一步即可求出結(jié)果.
解:(1)證明:∵把△ABC沿CE折疊后,點B恰好與斜邊AC的中點D重合,
∴CD=CB,∠CDE=∠B=90°,AD=CD,
在△ADE和△CDE中,
∴△ADE≌△CDE(SAS),
∴EA=EC,
∴△ACE為等腰三角形;
(2)由折疊的性質(zhì)知:∠BEC=∠DEC,
∵△ADE≌△CDE,∴∠AED=∠DEC,
∴∠AED=∠DEC=∠BEC=60°,
∴∠BCE=30°,∴,
又∵EA=EC,∴,
∴AE=4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( 。
A. 7 B. 8 C. 7 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出以下結(jié)論:①;②;③;④.其中所有正確結(jié)論的序號是( )
A. ③④ B. ②③ C. ①④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示△ABC,AB=AC,AD⊥BC,點E、F分別是AB、AC的中點.
(1)求證:四邊形AEDF是菱形;
(2)若四邊形AEDF的周長為12,兩條對角線的和等于7,四邊形AEDF的面積記為S1,三 角形ABC的面積記為S2,S1與S2有何數(shù)量關(guān)系_____.(直接填答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,D是AB的中點,過點B作∠CBE=∠A,BE與射線CA相交于點E,與射線CD相交于點F.
(1)如圖,當點E在線段CA上時,求證:BE⊥CD;
(2)若BE=CD,那么線段AC與BC之間具有怎樣的數(shù)量關(guān)系?并證明你所得到的結(jié)論;
(3)若△BDF是等腰三角形,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)y=(k>0)的圖象經(jīng)過BC邊的中點D(3,1).
(1)求這個反比例函數(shù)的表達式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線過原點和點,位于第一象限的點在直線上,軸上有一點,,軸于點.
(1)求直線的解析式;
(2)求線段、的長度;
(3)求點的坐標;
(4)若點是線段上一點,令長為,的面積為.
①寫出與的函數(shù)關(guān)系式,并指出自變量的取值范圍;
②當取何值時,為鈍角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工,若進行粗加工,每噸加工費用為600元,需天,每噸售價4000元;若進行精加工,每噸加工費為900元,需天,每噸售價4500元,現(xiàn)將這50噸原料全部加工完。(兩種加工方式不能同時進行)
(1)設(shè)其中粗加工x噸,獲利y元,求y與x的函數(shù)關(guān)系式(不要求寫自變量的范圍);
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大的利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(–1,2),與x軸的一個交點A在點(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com