如圖,平行于y軸的直尺(一部分)與雙曲線(x>0)交于點(diǎn)A、C,與x軸交于點(diǎn)B、D,連接AC.點(diǎn)A、B的刻度分別為5、2(單位:cm),直尺的寬度為2cm,OB=2cm.
(1)A點(diǎn)坐標(biāo)為______;
(2)求k的值;
(3)求梯形ABDC的面積.

【答案】分析:(1)已知了OB、AB的長,即可確定點(diǎn)A的坐標(biāo).
(2)將A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式中即可確定k的值.
(3)已知OB及直尺的寬,即可確定點(diǎn)C的橫坐標(biāo),根據(jù)反比例函數(shù)的解析式可得到點(diǎn)C的坐標(biāo);進(jìn)而可根據(jù)A、C坐標(biāo),得到AB、BD、CD的長,再根據(jù)梯形的面積公式求解即可.
解答:解:(1)由直尺的讀數(shù)知:AB=3cm,又OB=2cm;
∴A(2,3).(3分)

(2)將A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式中,得:
k=xy=2×3=6;
故k=6.(5分)

(3)易知OD=4cm,即C點(diǎn)橫坐標(biāo)為4,代入反比例函數(shù)解析式可得:C(4,1.5)(7分),
∴AB=3,CD=1.5,BD=2;
S梯形=(AB+CD)•BD=×(3+1.5)×2=4.5;
即梯形的面積4.5cm2(10分).
點(diǎn)評(píng):此題主要考查了反比例函數(shù)解析式的確定以及梯形面積的計(jì)算方法,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2數(shù)學(xué)公式相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請(qǐng)說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線與直線的解析式;

(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶萬州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);

(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請(qǐng)說明理由。若

用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的

范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?

(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?

若有,請(qǐng)求出所有滿足要求的t值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案