【題目】如圖,某居民小區(qū)內(nèi)A,B兩樓之間的距離MN=30 m,兩樓的高度都是20 m,A樓在B樓正南,B樓窗戶朝南.B樓內(nèi)一樓住戶的窗臺(tái)離小區(qū)地面的距離DN=2 m,窗戶高CD=1.8 m.當(dāng)正午時(shí)刻太陽光線與地面成30°角時(shí),A樓的影子是否影響B(tài)樓的一樓住戶采光?若影響,擋住該住戶窗戶多高?若不影響,請(qǐng)說明理由.(參考數(shù)據(jù):=1.414,=1.732,=2.236)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn)BD是對(duì)角線,AG∥DB,交CB的延長線于G,連接GF,若AD⊥BD.下列結(jié)論:①DE∥BF;②四邊形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正確的是( 。
A. ①②③④ B. ①② C. ①③ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的菱形ABCD中,BD=4,E、F分別是AD、CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=4,連接BE、EF、FB.
(1)試探究BE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)求EF的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo):
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,畫出△A′B′C′;
(3)若AB邊上有一點(diǎn)M(a,b),平移后對(duì)應(yīng)的點(diǎn)M′的坐標(biāo)為:
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a、b、c滿足關(guān)系式+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點(diǎn)P(﹣m,),請(qǐng)用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥y軸,A點(diǎn)的坐標(biāo)為(3,2),并且AB=4,則B的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四支足球隊(duì)進(jìn)行小組單循環(huán)比賽(每兩隊(duì)都要比賽一場(chǎng)),結(jié)果甲隊(duì)勝了丙隊(duì),并且甲、乙、丁勝的場(chǎng)數(shù)相同,則這三隊(duì)各勝的場(chǎng)數(shù)是( 。
A.3B.2C.1D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用四含五入法對(duì)0.03049取近似值,精確到0.001的結(jié)果是( )
A. 0.0305B. 0.04C. 0.030D. 0.031
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A,B,C,三點(diǎn)坐標(biāo)分別為A(﹣6,3),B(﹣4,1),C(﹣1,1).
(1)如圖1,順次連接AB,BC,CA,得△ABC.
①點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1的坐標(biāo)是 ,點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)B1的坐標(biāo)是 ;
②畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;
③tan∠A2C2B2= ;
(2)利用四邊形的不穩(wěn)定性,將第二象限部分由小正方形組成的網(wǎng)格,變化為如圖2所示的由小菱形組成的網(wǎng)格,每個(gè)小菱形的邊長仍為1個(gè)單位長度,且較小內(nèi)角為60°,原來的格點(diǎn)A,B,C分別對(duì)應(yīng)新網(wǎng)格中的格點(diǎn)A′,B′,C′,順次連接A′B′,B′C′,C′A′,得△A′B′C′,則tan∠A′C′B′= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com