【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結(jié)論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
【答案】A
【解析】
證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故結(jié)論①正確;由△OBO′是等邊三角形,可知結(jié)論②正確;在△AOO′中,三邊長(zhǎng)為3,4,5,這是一組勾股數(shù),故△AOO′是直角三角形;進(jìn)而求得∠AOB=150°,故結(jié)論③正確;S四邊形AOBO=S△AOO+S△OBO,可得結(jié)論④錯(cuò)誤;如圖②,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使得AB與AC重合,點(diǎn)O旋轉(zhuǎn)至O″點(diǎn).利用旋轉(zhuǎn)變換構(gòu)造等邊三角形與直角三角形,將S△AOC+S△AOB轉(zhuǎn)化為S△COO+S△AOO,計(jì)算可得結(jié)論⑤正確.
由題意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,
故結(jié)論①正確;
如圖①,連接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=4.
故結(jié)論②正確;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三邊長(zhǎng)為3,4,5,這是一組勾股數(shù),
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結(jié)論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=,
故結(jié)論④錯(cuò)誤;
如圖②所示,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使得AB與AC重合,點(diǎn)O旋轉(zhuǎn)至O″點(diǎn).
易知△AOO″是邊長(zhǎng)為3的等邊三角形,△COO″是邊長(zhǎng)為3、4、5的直角三角形,
則S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″=,
故結(jié)論⑤正確.
綜上所述,正確的結(jié)論為:①②③⑤.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點(diǎn)在線段AB上運(yùn)動(dòng),與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為-3,則點(diǎn)D的橫坐標(biāo)最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)O作EO⊥BD,交BA延長(zhǎng)線于點(diǎn)E,交AD于點(diǎn)F,若EF=OF,∠CBD=30°,BD=.求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點(diǎn)為的中點(diǎn),如果點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,與是否全等?請(qǐng)說明理由;
(2)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),
(1)求證:△ACE≌△BCD;
(2)若DE=13,BD=12,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0時(shí)x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,點(diǎn)C的坐標(biāo)為(-18,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,∠OFE=45°,求直線DE的解析式;
(3)求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x+6與y軸交于點(diǎn)B,直線l2:y=kx+6與x軸交于點(diǎn)A,且直線l1與直線l2相交所形成的角中,其中一個(gè)角的度數(shù)是75°,則線段AB的長(zhǎng)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com