【題目】已知直線l1:y=x+6與y軸交于點B,直線l2:y=kx+6與x軸交于點A,且直線l1與直線l2相交所形成的角中,其中一個角的度數是75°,則線段AB的長為______.
【答案】12或4
【解析】
令直線y=x+6與x軸交于點C,令y=x+6中x=0,則y=6,得到B(0,6);令y=kx+6中y=0,則x=-6,求得C(-6,0),求得∠BCO=45°,如圖1所示,當α=∠BCO+∠BAO=75°,如圖2所示,當α=∠CBO+∠ABO=75°,解直角三角形即可得到結論.
令直線y=x+6與x軸交于點C,
令y=x+6中x=0,則y=6,
∴B(0,6);
令y=kx+6中y=0,則x=-6,
∴C(-6,0),
∴∠BCO=45°,
如圖1所示,∵α=∠BCO+∠BAO=75°,
∴∠BAO=30°,
∴AB=2OB=12,
如圖2所示,∵α=∠CBO+∠ABO=75°,
∴∠ABO=30°,
∴AB=OB=4,
故答案為:12或4.
科目:初中數學 來源: 題型:
【題目】如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:
請根據以上統(tǒng)計圖中的信息解答下列問題.
(1)植樹3株的人數為 ;
(2)該班同學植樹株數的中位數是 ;
(3)求該班同學平均植樹的株數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2013年四川瀘州8分)如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m.
(1)求點B到AD的距離;
(2)求塔高CD(結果用根號表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數.②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=15,BC=9,點P是線段AC上的一個動點,連接BP,將線段BP繞點P逆時針旋轉90°得到線段PD,連接AD,則線段AD的最小值是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°,點D在線段AC上.
(1)求∠DCE的度數;
(2)當點D在線段AC上運動時(D不與A重合),請寫出一個反映DA,DC,DB之間關系的等式,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某經銷商從市場得知如下信息:
某品牌空調扇 | 某品牌電風扇 | |
進價(元/臺) | 700 | 100 |
售價(元/臺) | 900 | 160 |
他現(xiàn)有40000元資金可用來一次性購進該品牌空調扇和電風扇共100臺,設該經銷商購進空調扇臺,空調扇和電風扇全部銷售完后獲得利潤為元.
(1)求關于的函數解析式;
(2)利用函數性質,說明該經銷商如何進貨可獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數式表示線段AP= ;
(2)當t為何值時,點E在∠A的平分線上?
(3)當t為何值時,點A在線段PQ的垂直平分線上?
(4)連接PE,當t=1(s)時,求四邊形APEC的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com