(2006•自貢)半徑為1的⊙O內(nèi)有兩弦AB、AC,它們的長(zhǎng)分別,,則∠BAC=    °.
【答案】分析:因?yàn)閳A心與兩弦的位置不明確,所以分兩種情況討論,利用三角函數(shù)值先求出角度,再根據(jù)情況求解即可.
解答:解:過(guò)O分別作OD⊥AB于D,OE⊥AC于E,
當(dāng)如圖①時(shí),
∵AB=,AC=
由垂徑定理得AD=AB=,
AE=AC=,
∴cos∠1==,故∠1=30°.
cos∠OAC==,∠OAC=45°.
∴∠BAC=∠OAC-∠1=45°-30°=15°;
當(dāng)AB、AC,如圖②所示時(shí),同理可得,∠1=30°,∠2=45°,
∠BAC=∠1+∠2=30°+45°=75°,
∴∠BAC=75°或15°.
點(diǎn)評(píng):此題考查的是垂徑定理及特殊角的三角函數(shù)值,解答此題時(shí)要注意分類討論不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省自貢市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•自貢)半徑為1的⊙O內(nèi)有兩弦AB、AC,它們的長(zhǎng)分別,,則∠BAC=    °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省棗莊市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•萊蕪)半徑為2.5的⊙O中,直徑AB的不同側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P.已知BC:CA=4:3,點(diǎn)P在上運(yùn)動(dòng),過(guò)點(diǎn)C作CP的垂線,與PB的延長(zhǎng)線交于點(diǎn)Q.
(1)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于AB對(duì)稱時(shí),求CQ的長(zhǎng);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到的中點(diǎn)時(shí),求CQ的長(zhǎng);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),CQ取到最大值?求此時(shí)CQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省棗莊市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•萊蕪)半徑為2.5的⊙O中,直徑AB的不同側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P.已知BC:CA=4:3,點(diǎn)P在上運(yùn)動(dòng),過(guò)點(diǎn)C作CP的垂線,與PB的延長(zhǎng)線交于點(diǎn)Q.
(1)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于AB對(duì)稱時(shí),求CQ的長(zhǎng);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到的中點(diǎn)時(shí),求CQ的長(zhǎng);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),CQ取到最大值?求此時(shí)CQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省德州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•萊蕪)半徑為2.5的⊙O中,直徑AB的不同側(cè)有定點(diǎn)C和動(dòng)點(diǎn)P.已知BC:CA=4:3,點(diǎn)P在上運(yùn)動(dòng),過(guò)點(diǎn)C作CP的垂線,與PB的延長(zhǎng)線交于點(diǎn)Q.
(1)當(dāng)點(diǎn)P與點(diǎn)C關(guān)于AB對(duì)稱時(shí),求CQ的長(zhǎng);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到的中點(diǎn)時(shí),求CQ的長(zhǎng);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),CQ取到最大值?求此時(shí)CQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案