(2010•天津)已知AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)如圖①,若AB=2,∠P=30°,求AP的長(zhǎng)(結(jié)果保留根號(hào));
(2)如圖②,若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.
【答案】分析:(1)易證PA⊥AB,再通過(guò)解直角三角形求解;
(2)本題連接OC,證出OC⊥CD即可.首先連接AC,得出直角三角形ACP,根據(jù)直角三角形斜邊上中線等于斜邊一半得CD=AD,再利用等腰三角形性質(zhì)可證∠OCD=∠OAD=90°,從而解決問(wèn)題.
解答:解:(1)∵AB是⊙O的直徑,AP是切線,
∴∠BAP=90°.
在Rt△PAB中,AB=2,∠P=30°,
∴BP=2AB=2×2=4.
由勾股定理,得.   (5分)

(2)如圖,連接OC、AC.
∵AB是⊙O的直徑,
∴∠BCA=90°,又∵∠ACP=180°-∠BCA=90°.
在Rt△APC中,D為AP的中點(diǎn),

∴∠4=∠3.
又∵OC=OA,
∴∠1=∠2.
∵∠2+∠4=∠PAB=90°,
∴∠1+∠3=∠2+∠4=90°.
即OC⊥CD.
∴直線CD是⊙O的切線.                                     (8分)
點(diǎn)評(píng):此題考查了切線的判定和性質(zhì)及解直角三角形等知識(shí)點(diǎn),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2010•天津)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:
①b2-4ac>0;
②abc>0;
③8a+c>0;
④9a+3b+c<0
其中,正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•天津)已知一次函數(shù)y=2x-6與y=-x+3的圖象交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•天津)已知反比例函數(shù),k為常數(shù),k≠1.
(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;
(2)若在這個(gè)函數(shù)圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•天津)已知二次函數(shù)y=ax2+bx+c(a≠0)中自變量x和函數(shù)值y的部分對(duì)應(yīng)值如下表:
x- -1- 1 
y--2--2- 
則該二次函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•天津)已知一次函數(shù)y=2x-6與y=-x+3的圖象交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案