【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長CB交x軸于點(diǎn)A1 , 作第1個正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2 , 作第2個正方形A2B2C2C1 , …,按這樣的規(guī)律進(jìn)行下去,第2016個正方形的面積是
【答案】5×( )4030
【解析】解:∵點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2), ∴OA=1,OD=2,BC=AB=AD=
∵正方形ABCD,正方形A1B1C1C,
∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,
∴∠A1AB=∠ADO,
∵∠AOD=∠A1BA=90°,
∴△AOD∽△A1BA,
∴ ,
∴ ,
∴A1B= ,
∴A1B1=A1C=A1B+BC= ,
同理可得,A2B2= =( )2 ,
同理可得,A3B3=( )3 ,
同理可得,A2015B2015=( )2015 ,
∴S第2016個正方形的面積=S正方形C2015C2015B2015A2015=[( )2015 ]2=5×( )4030 ,
故答案為5×( )4030
先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B= ,A2B2=( )2 ,找出規(guī)律A2015B2015=( )2015 ,即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=ax與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)M( , ).
(1)求這兩個函數(shù)的表達(dá)式;
(2)如圖1,若∠AMB=90°,且其兩邊分別于兩坐標(biāo)軸的正半軸交于點(diǎn)A、B.求四邊形OAMB的面積.
(3)如圖2,點(diǎn)P是反比例函數(shù)y= (x>0)的圖象上一點(diǎn),過點(diǎn)P作x軸、y軸的垂線,垂足分別為E、F,PF交直線OM于點(diǎn)H,過作x軸的垂線,垂足為G.設(shè)點(diǎn)P的橫坐標(biāo)為m,當(dāng)m> 時,是否存在點(diǎn)P,使得四邊形PEGH為正方形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)用質(zhì)地、大小完全一樣的紙片分別制作一張卡片a、b、c,收集后放在一個不透明的箱子中,然后每人從箱子中隨機(jī)抽取一張.
(1)用列表或畫樹狀圖的方法表示三位同學(xué)抽到卡片的所有可能的結(jié)果;
(2)求三位同學(xué)中至少有一人抽到自己制作卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中,有兩個相等實(shí)數(shù)根的方程是( )
A.x(x﹣1)=0
B.x2﹣x+1=0
C.x2﹣2=0
D.x2﹣2x+1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邵陽市到長沙的高鐵列車?yán)锍瘫绕湛炝熊嚴(yán)锍炭s短了75千米,運(yùn)行時間減少了4小時,已知邵陽市到長沙的普快列車?yán)锍虨?06千米,高鐵列車平均時速是普快列車平均時速的3.5倍.
(1)求高鐵列車的平均時速;
(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當(dāng)日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會之前趕到嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸為直線x=1,給出下列結(jié)論:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
則正確的結(jié)論個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,延長CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段CM與CN的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線段AE的長度等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com