【題目】如圖是一個三角形數(shù)陣,仔細觀察排列規(guī)律:
第1行 1
第2行 -
第3行 - -
第4行 - -
.....
按照這個規(guī)律繼續(xù)排列下去,第21行第2個數(shù)是_______.
【答案】-
【解析】
先觀察找出規(guī)律,把1看成,那么數(shù)陣中不看符號,第1個數(shù)、第2個數(shù)、第3個數(shù)、…分母分別是1、2、3、…,分子都是分母的2倍減1,而分母是奇數(shù)時取正,分母為偶數(shù)時取負,然后判斷第21行第2個數(shù)是所有數(shù)中第幾個數(shù),按照規(guī)律寫出即可.
由數(shù)陣可知,第n行有n個數(shù),
∴前20行總共有:1+2+3+4+…+20=個數(shù),
∴第21行第2個數(shù)是所有數(shù)中第212個數(shù),
又∵所有數(shù)中第m個數(shù):分母為m,分子為2m-1,符號為(-1)m+1,即第m個數(shù)是,
∴第212個數(shù)是,即第21行第2個數(shù)是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,對角線AC與BD相交于點O,過點O作直線EF⊥BD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.
(1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
(2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,H為GD的中點,連接FH,并延長FH交ED于點J,連接IJ,IH,IF,IG.試探究線段IH與FH之間滿足的數(shù)量關(guān)系,并說明理由;
(3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EF⊥DE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GE,EC三者之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮從家步行到公交車站臺,等公交車去學校. 圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數(shù)關(guān)系. 下列說法錯誤的是
A. 他離家8km共用了30min B. 他等公交車時間為6min
C. 他步行的速度是100m/min D. 公交車的速度是350m/min
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2x+c(a≠0)與x軸、y軸分別交于點A,B,C三點,已知點A(﹣2,0),點C(0,﹣8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標;
(2)如圖1,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EBP沿直線EP折疊,使點B的對應(yīng)點B'落在拋物線的對稱軸上,求點P的坐標;
(3)如圖2,設(shè)BC交拋物線的對稱軸于點F,作直線CD,點M是直線CD上的動點,點N是平面內(nèi)一點,當以點B,F,M,N為頂點的四邊形是菱形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點 O 是坐標原點,四邊形 ABCO 是菱形,點 A 的坐標為(-3,4),點 C 在 x 軸的正半軸上,直線 AC 交 y 軸于點 M,AB 邊交 y 軸于點 H.
(1)求直線 AC 的解析式;
(2)連接 BM,如圖 2,動點 P 從點 A 出發(fā),沿折線 ABC 方向以 2 個單位/秒的速度向終點 C 勻速運動,設(shè)△PMB 的面積為 S(S≠0),點 P 的運動時間為t 秒,求 S 與 t 之間的函數(shù)關(guān)系式(要求寫出自變量 t 的取值范圍).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1) (-3)+(-8)-(-6)-7;
(2)-30×(-+);
(3) (-)÷(-)2-23;
(4)-42÷-0.25×[5-(-3)2].
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下列兩題:
①如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點,且∠DCE=45°,BE=4,則DE= .
②如圖4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B分別在x,y軸上,點D在第一象限內(nèi),DC⊥x軸于點C,AO=CD=2,AB=DA=,反比例函數(shù)y=(k>0)的圖象過CD的中點E.
(1)求k的值;
(2)△BFG和△DCA關(guān)于某點成中心對稱,其中點F在y軸上,試判斷點G是否在反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解學生參加體育活動的情況,學校對學生進行隨機抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少?”,共有4個選項:
A.1.5小時以上 B.1~1.5小時 C.0.5~1小時 D.0.5小時以下
圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了____名學生;學生參加體育活動時間的中位數(shù)落在_____時間段(填寫上面所給“A”、“B”、“C”、“D”中的一個選項);
(2)在圖1中將選項B的部分補充完整;
(3)若該校有3000名學生,你估計全?赡苡卸嗌倜麑W生平均每天參加體育活動的時間在0.5小時以下.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com