【題目】如圖,O為原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉90°得到線段BD,連結CD,某拋物線y=ax2+bx+c(a≠0)經(jīng)過點D、點E(1,1).
(1)若該拋物線過原點O,則a= ;
(2)若點Q在拋物線上,且滿足∠QOB與∠BCD互余,要使得符合條件的Q點的個數(shù)是4個,則a的取值范圍是 .
【答案】(1)﹣;(2)a<﹣或a>.
【解析】
試題分析:(1)過點D作DF⊥x軸于點F,先通過三角形全等求得D的坐標,把D、E的坐標和c=0代入y=ax2+bx+c,根據(jù)待定系數(shù)法即可求得;
(2)若符合條件的Q點的個數(shù)是4個,則當a<0時,拋物線交于y軸的負半軸,當a>0時,拋物線與直線OQ:y=﹣x有兩個交點,得到方程ax2﹣4ax+3a+1=﹣x,根據(jù)根與系數(shù)的關系得出不等式,解不等式即可求得.
解:(1)①過點D作DF⊥x軸于點F,如圖1,
∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
在△AOB和△BFD中,
,
∴△AOB≌△BFD(AAS)
∴DF=BO=1,BF=AO=2,
∴D的坐標是(3,1),
把D(3,1),E(1,1),O(0,0)代入y=ax2+bx+c,
得,
解得a=﹣,
故答案為﹣;
(2)如圖2,∵D(3,1),E(1,1),
拋物線y=ax2+bx+c過點E、D,代入可得,解得,所以y=ax2﹣4ax+3a+1.
分兩種情況:
①當拋物線y=ax2+bx+c開口向下時,若滿足∠QOB與∠BCD互余且符合條件的Q點的個數(shù)是4個,則點Q在x軸的上、下方各有兩個.
(i)當點Q在x軸的下方時,直線OQ與拋物線有兩個交點,滿足條件的Q有2個;
(ii)當點Q在x軸的上方時,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,拋物線y=ax2+bx+c與x軸的交點必須在x軸的正半軸上,與y軸的交點在y軸的負半軸,所以3a+1<0,解得a<﹣;
②當拋物線y=ax2+bx+c開口向上時,點Q在x軸的上、下方各有兩個,
(i)當點Q在x軸的上方時,直線OQ與拋物線y=ax2+bx+c有兩個交點,符合條件的點Q有兩個;
(ii)當點Q在x軸的下方時,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,符合條件的點Q才兩個.
根據(jù)(2)可知,要使得∠QOB與∠BCD互余,則必須∠QOB=∠BAO,
∴tan∠QOB=tan∠BAO==,此時直線OQ的斜率為﹣,則直線OQ的解析式為y=﹣x,要使直線OQ與拋物線y=ax2+bx+c有兩個交點,所以方程ax2﹣4ax+3a+1=﹣x有兩個不相等的實數(shù)根,所以△=(﹣4a+)2﹣4a(3a+1)>0,即4a2﹣8a+>0,解得a>(a<舍去)
綜上所示,a的取值范圍為a<﹣或a>.
故答案為a<﹣或a>.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(3,2)和點E是正比例函數(shù)y=ax與反比例函數(shù)的圖象的兩個交點.
(1)填空:點E坐標: ;不等式的解集為 ;
(2)求正比例函數(shù)和反比例函數(shù)的關系式;
(3)P(m,n)是函數(shù)圖象上的一個動點,其中0<m<3.過點P作PB⊥y軸于點B,過點A作AC⊥x軸于點C,直線PB、AC交于點D.當P為線段BD的中點時,求△POA的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點A.
(1)求k的值;
(2)將△AOB繞點O逆時針旋轉60°,得到△COD,其中點A與點C對應,試判斷點D是否在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元.銷售過程中發(fā)現(xiàn),月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+n.
(1)當銷售單價x定為25元時,李明每月獲得利潤為w為1250元,則n= ;
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)當銷售單價定為多少元時,每月可獲得最大利潤?并求最大利潤為多少元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com