如圖所示,在直角坐標(biāo)系中,作出下列已知點(diǎn)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn),并寫(xiě)出它們的坐標(biāo),這些坐標(biāo)與已知點(diǎn)的坐標(biāo)有什么關(guān)系?

A(3,0)
B(0,-2)
C(3,2)
D(-2,2)
答案:
解析:

根據(jù)中心對(duì)稱(chēng)點(diǎn)的作法,連接各已知點(diǎn)與原點(diǎn)并加倍延長(zhǎng)線(xiàn)段,即可得到各自的對(duì)稱(chēng)點(diǎn).

解:作出各點(diǎn)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn),如圖所示.

A(3,0)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)是;

B(0,-2)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)是;

C(32)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)是;

D(22)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)是

關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),橫、縱坐標(biāo)都互為相反數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線(xiàn)AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連結(jié)AD、DC、CB.

1.若△ABD的面積為4,求點(diǎn)B的坐標(biāo)

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線(xiàn)AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連結(jié)AD、DC、CB.

【小題1】若△ABD的面積為4,求點(diǎn)B的坐標(biāo)
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD 為菱形時(shí),直線(xiàn)AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省鹽城市大豐市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標(biāo)平面內(nèi),函數(shù)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請(qǐng)求出四邊形ABCD為菱形時(shí),直線(xiàn)AB的函數(shù)解析式;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案