如圖(單位:m),等腰直角三角形ABC以2米/秒的速度沿直線L向正方形移動(dòng),直到精英家教網(wǎng)AB與CD重合.設(shè)x秒時(shí),三角形與正方形不重疊部分的面積為ym2
(1)寫出y與x的關(guān)系式,并寫出自變量x的取值范圍;
(2)請(qǐng)畫出此函數(shù)的圖象;
(3)當(dāng)不重疊部分的面積是三角形面積的一半時(shí),三角形移動(dòng)了多長(zhǎng)時(shí)間?
分析:(1)根據(jù)題意可知,三角形與正方形重合部分是個(gè)等腰直角三角形,且直角邊都是2x,據(jù)此可得出三角形與正方形不重疊部分的面積y、x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式畫出圖象即可;
(3)將正方形的面積的一半代入(1)的函數(shù)關(guān)系式中,即可求得x的值.(其實(shí)此時(shí)AB與DC重合,也就是說等腰三角形運(yùn)動(dòng)的距離正好是正方形的邊長(zhǎng)8m.)
解答:解:(1)因?yàn)槿切闻c正方形重合部分是個(gè)等腰直角三角形,且直角邊都是2x,
∴重疊部分的面積=2x2,
又因?yàn)椤鰽BC的面積為:
1
2
×
8×8=32m2,
所以y=32-2x2,(0≤x≤4).

(2)所畫圖象如下所示:
精英家教網(wǎng)

(3)在y=32-2x2
當(dāng)y=16時(shí),2x2=16,
所以x2=8,解得x=2
2
秒(負(fù)值舍去).
當(dāng)不重疊部分的面積是三角形面積的一半時(shí),三角形移動(dòng)了2
2
秒.
點(diǎn)評(píng):本題考查了二次函數(shù)的實(shí)際應(yīng)用,難度適中,命題立意:考查綜合應(yīng)用知識(shí),分析問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.
(1)填空:PD的長(zhǎng)為
3
2
t
3
2
t
用含t的代數(shù)式表示);
(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說明理由;
(4)填空:在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•義烏市模擬)如圖,邊長(zhǎng)為4的等邊△AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)度的速度由點(diǎn)O向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.在點(diǎn)P的運(yùn)動(dòng)過程中,線段BP的中點(diǎn)為點(diǎn)E,將線段PE繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得PC. 
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到線段OA的中點(diǎn)時(shí),點(diǎn)C的坐標(biāo)為
7
2
,
3
2
7
2
3
2
;
(2)在點(diǎn)P從點(diǎn)O到點(diǎn)A的運(yùn)動(dòng)過程中,用含t的代數(shù)式表示點(diǎn)C的坐標(biāo);
(3)在點(diǎn)P從點(diǎn)O到點(diǎn)A的運(yùn)動(dòng)過程中,求出點(diǎn)C所經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,圓形轉(zhuǎn)盤被等分成三個(gè)扇形,并分別標(biāo)有數(shù)字-1,2,3.正方形ABCD的邊長(zhǎng)為4(如圖②),現(xiàn)做如下實(shí)驗(yàn):自由轉(zhuǎn)到轉(zhuǎn)盤兩次,指針指向的數(shù)字分別作為點(diǎn)P的坐標(biāo)(第一次指向的數(shù)字為橫坐標(biāo),第二次指向的數(shù)字為縱坐標(biāo)).
(1)用列表法(或畫樹狀圖法)表示點(diǎn)P坐標(biāo)的所有可能情況;
(2)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)和邊界)的概率;
(3)將正方形ABCD平移整數(shù)個(gè)單位,使點(diǎn)P落在正方形ABCD面上的概率為
23
?若存在,指出其中的一種平移方式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

  如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.

(1)填空:PD的長(zhǎng)為               (用含t的代數(shù)式表示);
(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說明理由;
(4)填空:在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為                            

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省翠苑中學(xué)九年級(jí)下學(xué)期3月考數(shù)學(xué)卷(帶解析) 題型:解答題

  如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸正半軸上,點(diǎn)B在第一象限.一動(dòng)點(diǎn)P沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA,過點(diǎn)P作PD⊥OB于點(diǎn)D.

(1)填空:PD的長(zhǎng)為               (用含t的代數(shù)式表示);
(2)求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說明理由;
(4)填空:在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)為                            

查看答案和解析>>

同步練習(xí)冊(cè)答案