(2007•廣州)如圖,在△ABC中,AB=AC,內(nèi)切圓O與邊BC、AC、AB分別切于D、E、F.
(1)求證:BF=CE;
(2)若∠C=30°,CE=2,求AC.

【答案】分析:(1)根據(jù)切線長(zhǎng)定理得到AF=AE,再結(jié)合AB=AC,得到BF=CE;
(2)結(jié)合(1)的結(jié)論和切線長(zhǎng)定理,得到D是BC的中點(diǎn),從而得到A,O,D三點(diǎn)共線.根據(jù)等腰三角形的三線合一得到直角三角形ACD.根據(jù)切線長(zhǎng)定理得到CD=CE,則根據(jù)銳角三角函數(shù)即可求得AC的長(zhǎng).
解答:(1)證明:∵AE,AF是⊙O的切線;
∴AE=AF,
又∵AC=AB,
∴AC-AE=AB-AF,
∴CE=BF,即BF=CE.

(2)解:連接AO、OD;
∵O是△ABC的內(nèi)心,
∴OA平分∠BAC,
∵⊙O是△ABC的內(nèi)切圓,D是切點(diǎn),
∴OD⊥BC;
又∵AC=AB,
∴A、O、D三點(diǎn)共線,即AD⊥BC,
∵CD、CE是⊙O的切線,
∴CD=CE=2
在Rt△ACD中,由∠C=30°,CD=2,得
AC==4.
點(diǎn)評(píng):此題主要是運(yùn)用了切線長(zhǎng)定理和等腰三角形的三線合一的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2007•廣州)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D,交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,則結(jié)論錯(cuò)誤的是( )

A.AD=DB
B.
C.OD=1
D.AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《圓》(02)(解析版) 題型:選擇題

(2007•廣州)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D,交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,則結(jié)論錯(cuò)誤的是( )

A.AD=DB
B.
C.OD=1
D.AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(05)(解析版) 題型:填空題

(2007•廣州)如圖,點(diǎn)O是AC的中點(diǎn),將周長(zhǎng)為4cm的菱形ABCD沿對(duì)角線AC方向平移AO長(zhǎng)度得到菱形OB′C′D′,則四邊形OECF的周長(zhǎng)是    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•廣州)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D,交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,則結(jié)論錯(cuò)誤的是( )

A.AD=DB
B.
C.OD=1
D.AB=

查看答案和解析>>

同步練習(xí)冊(cè)答案