【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的位置如圖,A(0,0),B(6,0),D(0,4)
(1) 根據(jù)圖形直接寫出點(diǎn)C的坐標(biāo);
(2) 已知直線m經(jīng)過點(diǎn)P(0,6)且把矩形ABCD分成面積相等的兩部分,請只用直尺準(zhǔn)確地畫出直線m,并求該直線m的解析式.
【答案】(1)(6,4);(2) y= x+6.
【解析】
(1)根據(jù)點(diǎn)B、D的坐標(biāo)求出點(diǎn)C的橫坐標(biāo)與縱坐標(biāo),然后寫出即可;
(2)連接OC、BD得到矩形的中心,然后根據(jù)平分矩形面積的直線必過中心作出直線m即可,再利用待定系數(shù)法求一次函數(shù)解析式解答.
(1)∵B(6,0)、D(0,4),
∴點(diǎn)C的橫坐標(biāo)是6,縱坐標(biāo)是4,
∴點(diǎn)C的坐標(biāo)為(6,4);
故答案為:(6,4);
(2)直線m如圖所示,
對角線OC、BD的交點(diǎn)坐標(biāo)為(3,2),
設(shè)直線m的解析式為y=kx+b(k≠0),
則,
解得,
所以,直線m的解析式為y=-x+6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖所示,二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B,C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi),且點(diǎn)A在點(diǎn)D的左側(cè).
(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長p關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學(xué)語言表達(dá):.
(1)在圖②,若,,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)和B(0,b)滿足,分別過點(diǎn)A、B作x軸、y軸的垂線交于點(diǎn)C,如圖,點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動.
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動了6秒時,描出此時P點(diǎn)的位置,并寫出點(diǎn)P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點(diǎn),將線段BP向下平移h個單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長分成相等的兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°, ∠BAD=40°,求∠BED的度數(shù);
(2)若△ABC的面積為80,BD=16,求E到BC邊的距離為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在□ABCD內(nèi)部,AF∥BE,DF∥CE.
(1)求證:△BCE≌△ADF;
(2)設(shè)□ABCD的面積為20,求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某愛心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡易的足球場和籃球場,供市民免費(fèi)使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.
(1)求修建一個足球場和一個籃球場各需多少萬元?
(2)該企業(yè)預(yù)計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,AC與BD交于點(diǎn)E,且AE=AB.
(1)DA=DB,求證:AB=CB;
(2)如圖2,△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)30°得到△FGC,點(diǎn)A經(jīng)過的路徑為,若AC=4,求圖中陰影部分面積S;
(3)在(2)的條件下,連接FB,求證:FB為⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com