【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過(guò)點(diǎn)AAMBD于點(diǎn)M,過(guò)點(diǎn)DDNAB于點(diǎn)N,且DN=,在DB的延長(zhǎng)線上取一點(diǎn)P,滿(mǎn)足∠ABD=MAP+PAB,則AP=_____.

【答案】6

【解析】根據(jù)BD=CD,AB=CD,可得BD=BA,再根據(jù)AMBD,DNAB,即可得到DN=AM=3,依據(jù)∠ABD=MAP+PAB,ABD=P+BAP,即可得到APM是等腰直角三角形,進(jìn)而得到AP=AM=6.

BD=CD,AB=CD,

BD=BA,

又∵AMBD,DNAB,

DN=AM=3,

又∵∠ABD=MAP+PAB,ABD=P+BAP,

∴∠P=PAM,

∴△APM是等腰直角三角形,

AP=AM=6,

故答案為:6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABO的面積為8,OAOB,BC12,點(diǎn)P的坐標(biāo)是(a,6).

(1) ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A , ),B ),C );

(2) 是否存在點(diǎn)P,使得?若存在,求出滿(mǎn)足條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)D、E分別是∠B的兩邊BC、BA上的點(diǎn),∠DEB2B,FBA上一點(diǎn).

1)如圖①,若DF平分∠BDE,求證:BDDE+EF;

2)如圖②,若DFDBE的外角平分線,BD、DEEF三者有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的外角,的角平分線交于點(diǎn).

1)若,,則;

2)探索的數(shù)量關(guān)系,并說(shuō)明理由;

3)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周長(zhǎng)相等的正三角形、正四邊形、正六邊形的面積S3、S4、S6間的大小關(guān)系是( )
A.S3>S4>S6
B.S6>S4>S3
C.S6>S3>S4
D.S4>S6>S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小李8時(shí)騎自行車(chē)從家里出發(fā),到野外郊游,16時(shí)回到家里.他離家的距離s(千米)與時(shí)間t(時(shí))之間的關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:

①小李到達(dá)離家最遠(yuǎn)的地方是14時(shí);

②小李第一次休息時(shí)間是10時(shí);

11時(shí)到12時(shí),小李騎了5千米;

④返回時(shí),小李的平均速度是10千米/時(shí).

其中,正確的有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)),其順序按圖中方向排列,如(10),(20),(2,1),(3,1),(30)…… 根據(jù)這個(gè)規(guī)律探索可得,第50個(gè)點(diǎn)的坐標(biāo)為(

A. (10,-5)B. (10,-1) C. (10,0) D. (10,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣60)、C(﹣10).

1)請(qǐng)直接寫(xiě)出點(diǎn)A關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為  ;

2)將△ABC平移,使點(diǎn)B移動(dòng)后的坐標(biāo)為B′(﹣5,﹣5),畫(huà)出平移后的圖形△ABC′;

3)將△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的圖形△ABC″.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,廣場(chǎng)中心菱形花壇ABCD的周長(zhǎng)是32米,∠A=60°,則A、C兩點(diǎn)之間的距離為(

A. 4 B. C. 8 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案