如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點(diǎn)E.

(1)求以直線x=4為對(duì)稱軸,且過(guò)C與原點(diǎn)O的拋物線的函數(shù)關(guān)系式,并說(shuō)明此拋物線一定過(guò)點(diǎn)E;
(2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為N,M是該拋物線上位于C、N之間的一動(dòng)點(diǎn),求△CMN面積的最大值.

(1)略
(2)
解:(1)點(diǎn)C的坐標(biāo).設(shè)拋物線的函數(shù)關(guān)系式為y=a(x–4)2+m,
,解得
∴所求拋物線的函數(shù)關(guān)系式為…………①
設(shè)直線AC的函數(shù)關(guān)系式為,解得
∴直線AC的函數(shù)關(guān)系式為,∴點(diǎn)E的坐標(biāo)為
把x=4代入①式,得,∴此拋物線過(guò)E點(diǎn).
(2)(1)中拋物線與x軸的另一個(gè)交點(diǎn)為N(8,0),設(shè)M(x,y),
過(guò)M作MG⊥x軸于G,
則S△CMN=S△MNG+S梯形MGBC—S△CBN=
=
=
∴當(dāng)x=5時(shí),S△CMN有最大值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在由10個(gè)邊長(zhǎng)都為1的小正三角形的網(wǎng)格中,點(diǎn)是網(wǎng)格的一個(gè)頂點(diǎn),以點(diǎn)為頂點(diǎn)作格點(diǎn)平行四邊形(即頂點(diǎn)均在格點(diǎn)上的四邊形),請(qǐng)你寫(xiě)出所有可能的平行四邊形的對(duì)角線的長(zhǎng)          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖17,在面積為4的平行四邊形ABCD中,作一個(gè)面積為1的△ABP,使點(diǎn)P在平行四邊形ABCD的邊上(用直尺、圓規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法、證明),并寫(xiě)出滿足條件的點(diǎn)P共有幾個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點(diǎn)P,過(guò)點(diǎn)P作PE∥AB,裁掉△PEC,并將△PEC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)180°拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn):
判斷圖2中四邊形ABEF的形狀:         ;四邊形ABEF的面積是          。(用含字母的代數(shù)式表示)
實(shí)踐探究:
類比圖2的剪拼方法,請(qǐng)你就圖3(已知:AB∥DC)畫(huà)出剪拼成一個(gè)平行四邊形的示意圖.

聯(lián)想拓展:
小明通過(guò)探究后發(fā)現(xiàn):在一個(gè)四邊形中,只要有一組對(duì)邊平行,就可以剪拼成平行四邊形.
如圖4,在梯形ABCD中,AD∥BC,E是CD的中點(diǎn), EF⊥AB于點(diǎn)F,AB=5,EF=4,求梯形ABCD的面積。

如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一平行四邊形?若能,請(qǐng)你在圖中畫(huà)出剪拼的示意圖并作必要的文字說(shuō)明;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小明量得家中的彩電屏幕的長(zhǎng)為58厘米,寬為46厘米,你能判斷這是一臺(tái)多少英寸的電視機(jī)。(   )
A.9英寸(23厘米)B.21英寸(54厘米)C.29英寸(74厘米)D.34英寸(87厘米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如:平行四邊形的一條對(duì)線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過(guò)點(diǎn)A作出梯形ABCD的面積等分線(不寫(xiě)作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫(huà)出面積等分線,并給出證明;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是菱形,點(diǎn)G是BC延長(zhǎng)線上一點(diǎn),連接AG,分別交BD、CD于點(diǎn)E、F,連接CE.

(1)求證:∠DAE=∠DCE;
(2)當(dāng)AE=2EF時(shí),判斷FG與EF有何等量關(guān)系?并證明你的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一活動(dòng)菱形衣架中,菱形的邊均為若墻上釘子間的距離    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖4,在圖(1)中,A1、B1、C1分別是△ABC的邊BC、CA、AB的中點(diǎn),在圖(2)中,A2、B2、C2分別是△A1B1C1的邊B1C1、C1 A1、 A1B1的中點(diǎn),…,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有     個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案