【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)()的圖象在第一象限交于點A,B,且該一次函數(shù)的圖象與y軸正半軸交于點C,過A,B分別作y軸的垂線,垂足分別為E,D,且.已知A(m,1),AE=4BD.
(1)填空:m= ;k= ;
(2)求B點的坐標(biāo)和一次函數(shù)的解析式;
(3)將直線AB向下平移m(m>0)個單位,使它與反比例函數(shù)圖象有唯一交點,求m的值.
【答案】(1)4,4;(2).(3)=9或1
【解析】
(1)根據(jù)反比例函數(shù)k的幾何意義即可求得k的值,把點A的坐標(biāo)代入解析式即可求出m的值;
(2)由AE=4BD即可確定點B的橫坐標(biāo),進(jìn)一步即可求得點B坐標(biāo),然后利用待定系數(shù)法求出一次函數(shù)的解析式即可;
(3)先設(shè)出平移后的直線解析式,再和反比例函數(shù)解析式聯(lián)立組成方程組,然后根據(jù)方程的判別式△=0即可求出m的值.
解:(1)由反比例函數(shù)k的幾何意義知:,因為圖象在第一、三象限,所以k=4,
∵點A(m,1)在上,∴m=4.
故答案為:4, 4;
(2)∵BD⊥y軸,AE⊥y軸,AE=4BD,A(4,1),
∴AE=4,BD=1,
∴xB=1,∴yB=4,
∴B(1,4),
將A(4,1),B(1,4)代入y=kx+b,得,解得,k=﹣1,b=5,
∴;
(3)設(shè)直線AB向下平移后的解析式為,
聯(lián)立:,即,整理得:
∵一次函數(shù)與反比例函數(shù)圖象有唯一交點,
∴△=0,即,
解得:=9或1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,BC=m,D,E分別是AB,AC邊的中點,點P為BC邊上的一個動點,連接PD,PA,PE.設(shè)PC=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線可能是( 。
A.PBB.PEC.PAD.PD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作發(fā)現(xiàn))如圖(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,連接AC,BD交于點M.
①AC與BD之間的數(shù)量關(guān)系為 ;
②∠AMB的度數(shù)為 ;
(類比探究)如圖(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC,交BD的延長線于點M.請計算的值及∠AMB的度數(shù);
(實際應(yīng)用)如圖(3),是一個由兩個都含有30°角的大小不同的直角三角板ABC、DCE組成的圖形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直線上,CE=1,BC= ,求點A、D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:
p=,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示.
(1)求日銷售量y與時間t的函數(shù)解析式;
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2 400元?
(4)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈m(m<7)元給村里的特困戶.在這前40天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(0,4)、B(4,4)、C(4,0),D(1,0).
(1)若拋物線經(jīng)過A、B、D三點,求此拋物線的解析式;
(2)若(1)中的拋物線的頂點為E,連接EB,若P是EB上一動點,過P點作PM⊥AB,PN垂直于y軸,垂足分別是M、N.求矩形AMPN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;②abc>0;③4a2b+c>0;④a+c>0,其中正確結(jié)論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P 為△ABC 內(nèi)一點,連接 PA、PB、PC,在△PAB、△PBC 和△PAC 中,如果存在一個三角形與△ABC 相似,那么就稱 P 為△ABC 的自相似點.
(1)如圖 2,已知 Rt△ABC 中,∠ACB=90°,CD 是 AB 上的中線,過點 B 作 BE⊥CD,垂足為 E,試說明 E 是△ABC 的自相似點.
(2)如圖 3,在△ABC 中,∠A<∠B<∠C.若△ABC 的三個內(nèi)角平分線的交 點 P 是該 三角形的自相似點,求該三角形三個內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】贛州蓉江新區(qū)某汽車銷售公司去年12月份銷售新上市一種新型低能耗汽車200輛,由于該型汽車的優(yōu)越的經(jīng)濟適用性,銷量快速上升,今年2月月份該公司銷售該型汽車達(dá)到450輛,并且去年12月到今年1月和今年1月到2月兩次的增長率相同.
(1)求該公司銷售該型汽車每次的增長率;
(2)若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=2x+10的圖像與函數(shù)y=(x<0)的圖像相交于點A,并與x軸交于點C.點D是線段上一點,△ODC與△OAC的面積比為1:3.若將△ODC繞點O逆時針旋轉(zhuǎn)得到△OD′C′,當(dāng)點D′第一次落在函數(shù)y=(x<0)的圖像上時,C′的橫坐標(biāo)為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com