【題目】結(jié)論:

①若a b c 0 ,且abc 0 ,則方程a bx c 0 的解是 x 1

②若a x 1 bx 1 有唯一的解,則a b;

③若b 2a ,則關(guān)于 x 的方程ax b 0a 0的解為 x ;

④若a b c 1,且a 0 ,則 x 1一定是方程ax b c 1的解.其中結(jié)論正確個數(shù)有( ).

A.4B.3C.2D.1

【答案】B

【解析】

根據(jù)方程的解的定義,就是能使方程的左右兩邊相等的未知數(shù)的值,即可判斷.

①當x=1時,代入方程a+bx+c=0即可得到a+b+c=0,成立,故正確;
ax-1=bx-1),去括號得:ax-a=bx-b,即(a-bx=a-b,則x=1,故正確;
③方程ax+b=0,移項得:ax=-b,則x=-,因為b=2a,所以-=2,則x=-2,故錯誤;
④把x=1代入方程ax+b+c,得到a+b+c=1,則x=1一定是方程ax+b+c=1的解,故正確.

綜上可得,正確共有3個.
故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,BDAC邊上的高,延長BCE,使DB=DE

1)求∠BDE的度數(shù);

2)求證:CED為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)的計算:

11﹣(﹣8+12+(﹣11);

2||;

3)﹣12﹣(1×[6+(﹣33]

4 ×(﹣625.5×8+25.5×8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+Cx軸交于點A(﹣1,0),B(﹣3,0),與y軸交于點C,頂點為D,拋物線的對稱軸與x軸的交點為E.

(1)求拋物線的解析式及E點的坐標;

(2)設點P是拋物線對稱軸上一點,且∠BPD=BCA,求點P的坐標;

(3)點F的坐標為(﹣2,4),若點Q在該拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線OF相切,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋中放有290個涂有紅、黑、白三種顏色的質(zhì)地相同的小球.若紅球個數(shù)是黑球個數(shù)的2倍多40個.從袋中任取一個球是白球的概率是

(1)求袋中紅球的個數(shù);

(2)求從袋中任取一個球是黑球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,D,E分別是ABAC上的點,BECD交與點O,給出下列四個條件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

1)從上述四個條件中,任選兩個為條件,可以判定ABC是等腰三角形?寫出所有可能的情況.

2)選擇(1)中的某一種情形,進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,已知∠B、∠C的角平分線相交于點O,∠A+D =200°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖戶每年的養(yǎng)殖成本包括固定成本和可變成本,其中固定成本每年均為4萬元,可變成本逐年增長,已知該養(yǎng)殖戶第一年的可變成本為2.6萬元,設可變成本平均每年增長的百分率為

1)用含x的代數(shù)式表示低3年的可變成本為 萬元;

2)如果該養(yǎng)殖戶第3年的養(yǎng)殖成本為7.146萬元,求可變成本平均每年的增長百分率x.

查看答案和解析>>

同步練習冊答案