【題目】如圖,在一面靠墻的空地上用長24m的籬笆,圍成中間隔有兩道籬笆的長方形花圃,設(shè)花圃的一邊AB為x(m),面積S(m2).
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)若墻的最大可用長度為8m,求圍成花圃的最大面積.
【答案】(1)S=﹣4x2+24x(0<x<6);(2)當(dāng)x取4時所圍成的花圃的面積最大,最大面積是32平方米.
【解析】
(1)根據(jù)花圃的一邊AB為x米,表示出BC,再根據(jù)長方形的面積公式列式計算即得結(jié)果;
(2)根據(jù)(1)題中S與x的函數(shù)關(guān)系式,結(jié)合x的取值范圍求出函數(shù)的最大值即可.
解:(1)∵花圃的一邊AB為x米,
∴BC=(24﹣4x)米,
∴S=x(24﹣4x)=﹣4x2+24x(0<x<6);
(2)S=﹣4x2+24x=﹣4(x﹣3)2+36,
∵24﹣4x≤8,∴x≥4,
∵0<x<6,
∴4≤x<6,
∵a=﹣4<0,
∴S隨x的增大而減小,
∴當(dāng)x=4時,S最大值=32,
答;當(dāng)x取4時所圍成的花圃的面積最大,最大面積是32平方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件。若商場平均每天要盈利1600元,每件襯衫應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春秋旅行社為吸引市民組團去天水灣風(fēng)景區(qū)旅游,推出了如下收費標(biāo)準(zhǔn):
某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=與x軸、y軸交于A、B兩點,將△OAB繞點B逆時針旋轉(zhuǎn)90°后得到△O′A′B,點O落到點O′的位置,點A落到點A′的位置.
(1)求點O′和點A′的坐標(biāo);
(2)將拋物線沿y軸方向平移后經(jīng)過點A′,求平移后所得拋物線對應(yīng)的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后所得拋物線與y軸的交點為C,與x軸的交點為D,點M在x軸上,點N在平移后所得拋物線上,求出以點C、D、M、N為頂點的四邊形是以CD為邊的平行四邊形時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,把以格點為頂點的三角形稱為格點三角形(每個小方格都是邊長為1的正方形).圖中△ABC是格點三角形,點A,B,C的坐標(biāo)分別是(﹣4,﹣1),(﹣2,﹣3),(﹣1,﹣2).
(1)以O為旋轉(zhuǎn)中心,把△ABC繞O點順時針旋轉(zhuǎn)90°后得到△A1B1C1,畫出△A1B1C1;
(2)以O為位似中心,在第一象限內(nèi)把△ABC放大2倍后得到△A2B2C2,畫出△A2B2C2;
(3)△ABC內(nèi)有一點P(a,b),寫出經(jīng)過(2)位似變換后P的對應(yīng)點P1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2,AB=1,則△PAB周長的最小值是( 。
A. 2+1 B. +1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,方程是關(guān)于x的一元二次方程.
(1)判斷方程的根的情況為 (填序號);
①方程有兩個相等的實數(shù)根; ②方程有兩個不相等的實數(shù)根;
③方程無實數(shù)根; ④無法判斷
(2)如圖,若△ABC內(nèi)接于半徑為2的⊙O,直徑BD⊥AC于點E,且∠DAC=60°,求方程的根;
(3)若是方程的一個根,△ABC的三邊a、b、c的長均為整數(shù),試求a、b、c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,AB⊥BC于點B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點E,已知AH=米,HF=米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).
(2)求籃板底部點E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=6,點M,N分別在AD,BC上,且AM=AD,BN=BC,E為直線BC上一動點,連接DE,將△DCE沿DE所在直線翻折得到△DC′E,當(dāng)點C′恰好落在直線MN上時,CE的長為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com