【題目】如圖,在矩形ABCD中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于點MN;②作直線MNCD于點E,若AB=8,AD=6,則EC=_____________

【答案】

【解析】

連接EA,如圖,利用基本作圖得到MN垂直平分AC,所以EC=EA,設(shè)CE=x,則AE=xDE=8-x,根據(jù)勾股定理得到62+8-x2=x2,然后解方程求出x即可.

解:連接EA,如圖,

由作圖得到MN垂直平分AC,

∴EC=EA,

四邊形ABCD為矩形,

∴CD=AB=8,∠D=90°,

設(shè)CE=x,則AE=x,DE=8-x,

Rt△ADE中,62+8-x2=x2,解得x=,

CE的長為

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】說明理由

如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?

解:∵ ∠1=∠2 (_________________________)

∠1+∠2=230°

∴∠1 =∠2 =________(填度數(shù))

bc

∴∠4 =∠2= ________(填度數(shù))

( )

∠2 +∠3 =180° ( )

∴∠3 =180°-∠2 =_________(填度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠AOB是直角,在∠AOB外作射線OCOM平分∠AOC,ON平分∠BOC.

(1)若∠AOC=38°,求∠MON的度數(shù);

(2)若∠AOC=,試說明∠MON的大小與無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上線段AB=2(單位長度),線段CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是-10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.設(shè)運動時間為t s.

(1)當(dāng)點B與點C相遇時,點A、點D在數(shù)軸上表示的數(shù)分別為________;

(2)當(dāng)t為何值時,點B剛好與線段CD的中點重合;

(3)當(dāng)運動到BC=8(單位長度)時,求出此時點B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電路檢修小組在東西方向的一道路上檢修用電線路,檢修車輛從該道路處出發(fā),如果規(guī)定檢修車輛向東行駛為正,向西行駛為負,某一天施工過程中七次車輛行駛記錄如下(單位:千米):

第一次

第二次

第三次

第四次

第五次

第六次

第七次

)問檢修小組收工時在的哪個方位?距處多遠?

2)若檢修車輛每千米耗油升,每升汽油需元,問這一天檢修車輛所需汽油費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC=4,求ABBC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識鏈接:

“轉(zhuǎn)化、化歸思想”是數(shù)學(xué)學(xué)習(xí)中常用的一種探究新知、解決問題的基本的數(shù)學(xué)思想方法,通過“轉(zhuǎn)化、化歸”通?梢詫崿F(xiàn)化未知為已知,化復(fù)雜為簡單,從而使問題得以解決.

1)問題背景:已知:△ABC.試說明:∠A+B+C=180°.

問題解決:(填出依據(jù))

解:(1)如圖①,延長ABE,過點BBFAC.

BFAC(作圖)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定義)

∴∠A+ABC+C=180°(等量代換)

小結(jié)反思:本題通過添加適當(dāng)?shù)妮o助線,把三角形的三個角之和轉(zhuǎn)化成了一個平角,利用平角的定義,說明了數(shù)學(xué)上的一個重要結(jié)論“三角形的三個內(nèi)角和等于180°.

2)類比探究:請同學(xué)們參考圖②,模仿(1)的解決過程試說明“三角形的三個內(nèi)角和等于180°”

3)拓展探究:如圖③,是一個五邊形,請直接寫出五邊形ABCDE的五個內(nèi)角之和∠A+B+C+D+E= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,D是邊BC上一點,點E、F分別是線段AB、AD中點,聯(lián)結(jié)CE、CF、EF

1)求證:△CEF≌△AEF

2)聯(lián)結(jié)DE,當(dāng)BD2CD時,求證:AD2DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間x ()的關(guān)系可近似地用二次函數(shù)y=-200x2+400x刻畫;1.5時后(包括1.5)yx可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計算:喝酒后幾時血液中的酒精含量達到最大值?最大值為多少

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于酒后駕駛,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.


查看答案和解析>>

同步練習(xí)冊答案