【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題做如下探究:
(問(wèn)題背景)
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC、BC、CD之間的數(shù)量關(guān)系.小明同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B、C分別落在點(diǎn)A、E處(如圖②),易證點(diǎn)C、A、E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
(簡(jiǎn)單應(yīng)用)
(1)在圖①中,若AC=,BC=2,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,,若AB=10,BC=8,求CD的長(zhǎng).
(拓展延伸)
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=a,BC=b(a<b),求CD的長(zhǎng).(用含a,b的代數(shù)式表示).
(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),請(qǐng)直接寫(xiě)出線段PQ與AC的數(shù)量關(guān)系.
【答案】(1);(2)7;(3)CD=;(4)線段PQ與AC的數(shù)量關(guān)系是或.
【解析】
(1)由題意可知:AC+BC=CD,所以將AC與BC的長(zhǎng)度代入即可得出CD的長(zhǎng)度;
(2)連接AC、BD、AD即可將問(wèn)題轉(zhuǎn)化為第(1)問(wèn)的問(wèn)題,利用題目所給出的證明思路即可求出CD的長(zhǎng)度;
(3)以AB為直徑作⊙O,連接OD并延長(zhǎng)交⊙O于點(diǎn)D1,由(2)問(wèn)題可知:AC+BC=CD1;又因?yàn)?/span>CD1=D1D,所以利用勾股定理即可求出CD的長(zhǎng)度;
(4)根據(jù)題意可知:點(diǎn)E的位置有兩種,分別是當(dāng)點(diǎn)E在直線AC的右側(cè)和當(dāng)點(diǎn)E在直線AC的左側(cè)時(shí),連接CQ、CP后,利用(2)和(3)問(wèn)的結(jié)論進(jìn)行解答.
(1)由題意可得:AC+BC=CD,
∵,
∴,
∴;
(2)連接AC、BD、AD,
∵AB是⊙O的直徑,
∴∠ADB=∠ACB=90°,
∵AD=BD,
將△BCD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°到△AED處,如圖③,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三點(diǎn)共線,
∵AB=10,BC=8,
∴由勾股定理可求得:AC=6,
∵BC=AE,
∴CE=AE+AC=14,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE=CD,
∴CD=7;
(3)以AB為直徑作⊙O,連接OD并延長(zhǎng)交⊙O于點(diǎn)D1,
連接D1A,D1B,D1C,如圖④
由(2)的證明過(guò)程可知:AC+BC=D1C,
∴,
又∵D1D是⊙O的直徑,
∴∠DCD1=90°,
∵AC=a,BC=b,
∴由勾股定理可求得:AB2=a2+b2,
∴D1D2=AB2=a2+b2,
∵D1C2+CD2=D1D2,
∴CD2=a2+b2﹣,
∵a<b,
∴;
(4)當(dāng)點(diǎn)E在直線AC的左側(cè)時(shí),如圖⑤,
連接CQ,PC,
∵AC=BC,∠ACB=90°,
點(diǎn)P是AB的中點(diǎn),
∴AP=CP,∠APC=90°,
又∵CA=CE,點(diǎn)Q是AE的中點(diǎn),
∴∠CQA=90°,
設(shè)AC=a,
∵AE=,
∴,
∴,
由勾股定理可求得:,
由(2)的證明過(guò)程可知:AQ+CQ=PQ,
∴,
∴,
當(dāng)點(diǎn)E在直線AC的右側(cè)時(shí),如圖⑥,
連接CQ、CP,
同理可知:∠AQC=∠APC=90°,
設(shè)AC=a,
∴,
由勾股定理可求得:,
由(3)的結(jié)論可知:,
∴,
綜上所述,線段PQ與AC的數(shù)量關(guān)系是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點(diǎn),AE⊥BF于點(diǎn)G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到△AB′E′(如圖2),使點(diǎn)E落在CD邊上的點(diǎn)E′處,問(wèn)△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:“如圖,ABCD的對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請(qǐng)根據(jù)上述條件,寫(xiě)出一個(gè)正確結(jié)論”其中四位同學(xué)寫(xiě)出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫(xiě)出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在Rt△ABC中,∠ABC=90°,BF為斜邊上的高,在射線AB上有點(diǎn)D,連接DF,作∠DFE=90°,FE交射線BC于點(diǎn)E.
(問(wèn)題發(fā)現(xiàn))如圖1所示,如果AB=CB,則DF與EF的數(shù)量關(guān)系為DF EF(選填>,<,=)
(類比探究)如圖2所示,如果改變Rt△ABC中兩直角邊的比例,使得AB=2BC,則DF與EF還存在①中的關(guān)系嗎?
(拓展延伸)如圖3所示,在Rt△ABC中,如果已知BC=,AB=3,EF=,試求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),弦CD與AB相交于E.
(1)若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學(xué)小組為了測(cè)量假山的高度DE,在公園找了一水平地面,在A處測(cè)得建筑物點(diǎn)D(即山頂)的仰角為35°,沿水平方向前進(jìn)20米到達(dá)B點(diǎn),測(cè)得建筑物頂部C點(diǎn)的仰角為45°,求假山的高度DE.(結(jié)果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的一個(gè)交點(diǎn)坐標(biāo),頂點(diǎn)A的坐標(biāo)為.直線交x軸于點(diǎn)B,交y軸于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)D,E為y軸上的一個(gè)動(dòng)點(diǎn).
(1)求這條拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)若以C、D、E為頂點(diǎn)的三角形與△ACD相似,求點(diǎn)E的坐標(biāo);
(3)若點(diǎn)E關(guān)于直線BC的對(duì)稱點(diǎn)M恰好落在拋物線上,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月,振華中學(xué)舉行了迎國(guó)慶中華傳統(tǒng)文化節(jié)活動(dòng).本次文化節(jié)共有五個(gè)活動(dòng):書(shū)法比賽;國(guó)畫(huà)競(jìng)技;詩(shī)歌朗誦;漢字大賽;古典樂(lè)器演奏.活動(dòng)結(jié)束后,某班數(shù)學(xué)興趣小組開(kāi)展了“我最喜愛(ài)的活動(dòng)”的抽樣調(diào)查(每人只選一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次催記抽取的初三學(xué)生共 人, ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)初三年級(jí)準(zhǔn)備在五名優(yōu)秀的書(shū)法比賽選手中任意選擇兩人參加學(xué)校的最終決賽,這五名選手中有三名男生和兩名女生,用樹(shù)狀圖或列表法求選出的兩名選手正好是一男一女的概率是多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com