【題目】如圖所示,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面積.

(2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1.寫出點A1,B1,C1的坐標(biāo).

(3)在圖形中作出△ABC關(guān)于y軸的對稱圖形△A2B2C2.寫出點A2,B2,C2的坐標(biāo).

【答案】(1)SABC=7.5; (2)畫圖見解析,A1(﹣1,﹣5),B1(﹣1,0),C1(﹣4,﹣3);(3)畫圖見解析,A2(1,5),B2(1,0),C2(4,3).

【解析】

(1)利用三角形的面積公式列式進(jìn)行計算即可求解;

(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于x軸對稱的對應(yīng)點A1、B1、C1的位置,然后順次連接可得A1B1C1,再根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo)即可;

(3)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于y軸對稱的對應(yīng)點A2、B2、C2的位置,然后順次連接可得A2B2C2再根據(jù)平面直角坐標(biāo)系寫出點的坐標(biāo)即可;

(1)SABC=×5×3=7.5;

(2)A1B1C1如圖所示,A1(﹣1,﹣5),B1(﹣1,0),C1(﹣4,﹣3);

(3)A2B2C2如圖所示,A2(1,5),B2(1,0),C2(4,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強電動自行車質(zhì)量監(jiān)管,切實保障消費者的合法權(quán)益,2015年11月,河南開封市工商局對24個品牌批次的電動自行車進(jìn)行抽查檢驗,其中抽查檢驗的某品牌的電動自行車如圖所示,它的大燈M射出的光線MA,MB的與MN的夾角分別為76°和60°,MN⊥地面CD,MN=0.8m,圖中的陰影部分表示在夜晚時,燈M所照射的范圍.(提示:≈1.7,sin14° , cos14°≈ , tan14
(1)求陰影部分的面積;
(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應(yīng)時間是0.2s.小鵬某天晚上以6m/s的速度駕駛該車,在行駛的途中,通過大燈M,他發(fā)現(xiàn)在他的正前方有一個小球(即小孩在圖中的點A處),小鵬從做出剎車動作到電動自行車停止的剎車距離為1.3m,請判斷小鵬當(dāng)時是否有撞到該小孩?(大燈M與前輪前端間的水平距離為0.3m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我區(qū)某中學(xué)體育組因高中教學(xué)需要本學(xué)期購進(jìn)籃球和排球共80個,共花費5800元,已知籃球的單價是80元/個,排球的單價是50元/個.

(1)籃球和排球各購進(jìn)了多少個(列方程組解答)?

(2)因該中學(xué)秋季開學(xué)準(zhǔn)備為初中也購買籃球和排球,教學(xué)資源實現(xiàn)共享,體育組提出還需購進(jìn)同樣的籃球和排球共40個,但學(xué)校要求花費不能超過2810元,那么籃球最多能購進(jìn)多少個(列不等式解答)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將-2,-1,0,1,2,3,4,5,6,7這10個數(shù)分別填寫在五角星中每兩條線的交點處(每個交點處只填寫一個數(shù)),將每一條線上的4個數(shù)相加,共得5個數(shù),設(shè)為a1,a2,a3,a4,a5.

(1)求(a1+a2+a3+a4+a5)的值;

(2)交換其中任何兩位數(shù)的位置后,(a1+a2+a3+a4+a5)的值是否改變?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點,點A在點B的左側(cè).
(1)求A,B兩點的坐標(biāo)和此拋物線的對稱軸;
(2)設(shè)此拋物線的頂點為C,點D與點C關(guān)于x軸對稱,求四邊形ACBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑.PC是⊙O的切線,C為切點,PD⊥AB于點D,交AC于點E.
(1)求證:∠PCE=∠PEC;
(2)若AB=10,ED= , sinA= , 求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過點A,BD直線m, CE直線m,垂足分別為點DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點所在直線m上的兩動點(D、AE三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,AB=AC。

1)若DAC的中點,BD把三角形的周長分為24cm30cm兩部分,求ABC三邊的長;

2)若DAC上一點,試說明ACBD+DC)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個棱長為的正方體的每個面等分成個小正方形,然后沿每個面正中心的一個正方形向里挖空(相當(dāng)于挖去個小正方體),所得到的幾何體的表面積是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

同步練習(xí)冊答案