【題目】如圖,四邊形中,,,是的中點,連結(jié)并延長交的延長線于點.
圖中可以由________繞點________旋轉(zhuǎn)________后得到;
若,,,求的面積.
【答案】(1);(2)25.
【解析】
(1)由已知條件可證明△EBA≌△EFD,所以△EFD可以由△EBA繞點E旋轉(zhuǎn)180°后得到;
(2)由(1)可知△EBA≌△EFD,所以求△BCF的面積可轉(zhuǎn)化為求梯形ABCD的面積,根據(jù)梯形的面積公式計算即可.
(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE.
∵E是AD的中點,∴AE=CE.在△EBA和△EFD中,∵,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA繞點E旋轉(zhuǎn)180°后得到.
故答案為:△EBA,E,180°;
(2)∵△EBA≌△EFD,∴S△BCF=S梯形ABCD===25.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+3交x軸于點A,交y軸于點B,頂點為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點A,交x軸于另一點C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點A,C,D的坐標(biāo);
(2)動點P在BD上以每秒2個單位長的速度由點B向點D運動,同時動點Q在CA上以每秒3個單位長的速度由點C向點A運動,當(dāng)其中一個點到達(dá)終點停止運動時,另一個點也隨之停止運動,設(shè)運動時間為t秒.PQ交線段AD于點E.
①當(dāng)∠DPE=∠CAD時,求t的值;
②過點E作EM⊥BD,垂足為點M,過點P作PN⊥BD交線段AB或AD于點N,當(dāng)PN=EM時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程有實數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.
(1)如圖1,若直線與相交于,過點作于,連接并延長至,使得,過點作于,證明:.
(2)如圖2,若直線與的延長線相交于,過點作于,連接并延長至,使得,過點作交的延長線于,探究:、、之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生某科目期末評價成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果期末評價成績80分以上(含80分),則評為“優(yōu)秀”.下面表中是小張和小王兩位同學(xué)的成績記錄:
完成作業(yè) | 單元測試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三項成績的平均分記為期末評價成績,請計算小張的期末評價成績;
(2)若按完成作業(yè)、單元檢測、期末考試三項成績按的權(quán)重來確定期末評價成績.
①請計算小張的期末評價成績?yōu)槎嗌俜郑?/span>
②小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,是圓直徑,是圓的切線,切點為,平行于弦,,的延長線交于點,若,且,的長是關(guān)于的方程的兩個根
證明:是圓的切線;
求線段的長;
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù),則下列說法正確的是( )
A. 圖象的開口向下 B. 函數(shù)的最小值為
C. 圖象的對稱軸為直線 D. 當(dāng)時,隨的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com