【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.

【答案】11;(2;(3)最大值為21,最小值為﹣4

【解析】

試題(1)由題意△≥0,列出不等式,解不等式即可;

2)畫(huà)出翻折.平移后的圖象,根據(jù)頂點(diǎn)坐標(biāo)即可寫出函數(shù)的解析式;

3)首先確定n的取值范圍,利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;

試題解析:(1)對(duì)于一元二次方程,△=(m+122m2+1)=﹣m2+2m1=﹣(m12,∵方程有實(shí)數(shù)根,∴﹣(m120,∴m=1

2)由(1)可知= ,圖象如圖所示:

平移后的解析式為,即

3)由消去y得到,由題意△≥0,∴364n80,∴n7,∵nm,m=1,∴1n7,令y′=n24n=(n224,∴n=2時(shí),y′的值最小,最小值為﹣4,n=7時(shí),y′的值最大,最大值為21,∴的最大值為21,最小值為﹣4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=x2﹣2mx+2016(m為常教)的圖象上有三點(diǎn):A(x1,y1)、B(x2,y2)、C(x3,y3),其中x1=+m,x2=+m,x3=m﹣1,則y1、y2、y3的大小關(guān)系是( 。

A. y2<y3<y1 B. y3<y1<y2 C. y1<y2<y3 D. y1<y3<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接平面上四點(diǎn)得到一個(gè)四邊形,從①,②,③,④四個(gè)條件中任取其中兩個(gè),可以得出“四邊形是平行四邊形”,這一結(jié)論的情況共有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DEDF連接EF

1)如圖1,求證:∠BED=AFD;

2)求證:BE2+CF2=EF2;

3)如圖2,當(dāng)∠ABC=45°,若BE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON30°,點(diǎn)A1,A2A3,…在射線ON上,點(diǎn)B1B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA24,則△AnBnAn+1的邊長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中錯(cuò)誤的是

A. 中,若 ,則 為直角三角形

B. 中,若 ,則 為直角三角形

C. 中,若 ,則 為直角三角形

D. 中,若 ,則 為直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面,水面上升時(shí),水面的寬度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,在中,,,,點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng),點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).

如果分別從、同時(shí)出發(fā),那么幾秒后,的面積等于?

中,的面積能否等于?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)正整數(shù)根(是正整數(shù)).的三邊、滿足,

求:

的值;

的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案