如圖所示,在直角坐標系中,A點坐標為(-3,-2),⊙A的半徑為1,P為x軸上一動點,PQ切⊙A于點Q,則當PQ最小時,P點的坐標為( )

A.(-4,0)
B.(-2,0)
C.(-4,0)或(-2,0)
D.(-3,0)
【答案】分析:此題根據(jù)切線的性質以及勾股定理,把要求PQ的最小值轉化為求AP的最小值,再根據(jù)垂線段最短的性質進行分析求解.
解答:解:連接AQ,AP.
根據(jù)切線的性質定理,得AQ⊥PQ;
要使PQ最小,只需AP最小,
則根據(jù)垂線段最短,則作AP⊥x軸于P,即為所求作的點P;
此時P點的坐標是(-3,0).
故選D.
點評:此題應先將問題進行轉化,再根據(jù)垂線段最短的性質進行分析.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,O為原點,點A的坐標為(10,0),點B在第一象限內,BO=5,精英家教網(wǎng)sin∠BOA=
35

求:(1)點B的坐標;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內,函數(shù)y=
mx
(x>0,m是常數(shù))
的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

1.若△ABD的面積為4,求點B的坐標

2.求證:DC∥AB

3.四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在直角坐標平面內,函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連結AD、DC、CB.

【小題1】若△ABD的面積為4,求點B的坐標
【小題2】求證:DC∥AB
【小題3】四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD 為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省鹽城市大豐市中考數(shù)學一模試卷(解析版) 題型:解答題

如圖所示,在直角坐標平面內,函數(shù)的圖象經(jīng)過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數(shù)解析式;如果不能,請說明理由.

查看答案和解析>>

同步練習冊答案