【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
【答案】(1);(2);(3).
【解析】
試題分析:(1)設(shè)點D的坐標(biāo)為(4,m)(m>0),則點A的坐標(biāo)為(4,3+m),由點A的坐標(biāo)表示出點C的坐標(biāo),根據(jù)C、D點在反比例函數(shù)圖象上結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可得出關(guān)于k、m的二元一次方程,解方程即可得出結(jié)論;
(2)由m的值,可找出點A的坐標(biāo),由此即可得出線段OB、AB的長度,通過解直角三角形即可得出結(jié)論;
(3)由m的值,可找出點C、D的坐標(biāo),設(shè)出過點C、D的一次函數(shù)的解析式為y=ax+b,由點C、D的坐標(biāo)利用待定系數(shù)法即可得出結(jié)論.
試題解析:(1)設(shè)點D的坐標(biāo)為(4,m)(m>0),則點A的坐標(biāo)為(4,3+m),∵點C為線段AO的中點,∴點C的坐標(biāo)為(2,).
∵點C、點D均在反比例函數(shù)的函數(shù)圖象上,∴,解得:,∴反比例函數(shù)的解析式為.
(2)∵m=1,∴點A的坐標(biāo)為(4,4),∴OB=4,AB=4.
在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==,cos∠OAB==.
(3))∵m=1,∴點C的坐標(biāo)為(2,2),點D的坐標(biāo)為(4,1).
設(shè)經(jīng)過點C、D的一次函數(shù)的解析式為y=ax+b,則有,解得:,∴經(jīng)過C、D兩點的一次函數(shù)解析式為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( )
A. 2a2+a=3a3B. (m2)3=m5C. (x+y)2=x2+y2D. a6÷a3=a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綜合與實踐”學(xué)習(xí)活動準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度.
(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.
(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示), 操作一:
(1)折疊紙面,使表示的1點與﹣1表示的點重合,則﹣3表示的點與表示的點重合; 操作二:
(2)折疊紙面,使﹣1表示的點與3表示的點重合,回答以下問題: ①5表示的點與數(shù)表示的點重合;
②若數(shù)軸上A、B兩點之間距離為11,(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點O是△ABC的兩條角平分線的交點,
(1)若∠A=30°,則∠BOC的大小是;
(2)若∠A=60°,則∠BOC的大小是;
(3)若∠A=n°,則∠BOC的大小是多少?試用學(xué)過的知識說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有兩點A、B,點A表示的數(shù)是8,點B在點A的左側(cè),且AB=14,動點P從點A出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù): ;點P表示的數(shù)用含t的代數(shù)式表示為 .
(2)動點Q從點B出發(fā)沿數(shù)軸向左勻速運動,速度是點P速度的一半,動點P、Q同時出發(fā),問點P運動多少秒后與點Q的距離為2個單位?
(3)若點M為線段AP的中點,點N為線段BP的中點,在點P的運動過程中,線段MN的長度是否會發(fā)生變化?若變化,請說明理由;若不變,求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標(biāo)原點),若△BOC的面積為3,求該一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在六邊形的頂點處分別標(biāo)上數(shù)1, 2, 3, 4,5, 6,能否使任意三個相鄰頂點處的三個數(shù)之和
(1)大于9?
(2)大于10?如能,請在圖中標(biāo)出來;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com