已知:如圖,在⊙O中,直徑AB⊥CD,BE切⊙O于B,且BE=BC,CE交AB于F、交⊙O于M,連接MO并延長,交⊙O于N.則下列結(jié)論中,正確的是( )

A.CF=FM
B.OF=FB
C.
D.BC∥MN
【答案】分析:由BE為圓的切線,利用切線的性質(zhì)得到BE與AB垂直,再由CD與AB垂直,得到BE與CD平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,由BC=BE,利用等邊對等角得到一對角相等,等量代換得到一對角相等,再由OC=OM,利用等邊對等角得到一對角相等,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到BC與MN平行.
解答:解:∵BE為圓O的切線,
∴BE⊥AB,
∵CD⊥AB,
∴BE∥CD,
∴∠BEF=∠DCF,
∵BC=BE,
∴∠BCE=∠BEF,
∴∠BCE=∠DCF,
∵OC=OM,
∴∠DCF=∠CMN,
∴∠BCE=∠CMN,
∴BC∥MN.
故選D
點評:此題考查了切線的性質(zhì),等腰三角形的性質(zhì),平行線的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在?ABCD中,對角線AC交BD于點O,四邊形AODE是平行四邊形.求證:四邊形ABOE、四邊形DCOE都是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知:如圖,在△ABC中,AB=AC,點D,E在邊BC上,且BD=CE.
(1)找出圖中所有的互相全等的三角形;
(2)求證:∠ADE=AED.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)計算:(
2
-1)-1+
8
-6sin45°+(-1)2011

(2)先化簡,再求值:
x2-2xy+y2
x2-xy
÷(
x
y
-
y
x
)
,其中x=
2
-1,y=1

(3)如圖,已知:如圖,在?ABCD中,BE=DF.求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,在△ABC中,AB=AC,點P是△ABC的中線AD上的任意一點(不與點A重合.將線段AP繞點A逆時針旋轉(zhuǎn)到AQ,使∠PAQ=∠BAC,連接BP,CQ
(1)求證:BP=CQ.
(2)設直線BP與直線CQ相交于點E,∠BAC=α,∠BEC=β,
①若點P在線段AD上移動(不與點A重合),則“α與β之間有怎樣的數(shù)量關系?并說明理由.
②若點P在直線AD上移動(不與點A重合).則α與β之間有怎樣的數(shù)量關系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•密云縣一模)已知:如圖,在△ABC中,∠A=∠B=30°,D是AB 邊上一點,以AD為直徑作⊙O恰過點C.
(1)求證:BC所在直線是⊙O的切線;
(2)若AD=2
3
,求弦AC的長.

查看答案和解析>>

同步練習冊答案