精英家教網 > 初中數學 > 題目詳情
一次函數y=ax+b的圖象分別與x軸、y軸交于點M,N,與反比例函數y=的圖象相交于點A,B.過點A分別作AC⊥x軸,AE⊥y軸,垂足分別為C,E;過點B分別作BF⊥x軸,BD⊥y軸,垂足分別為F,D,AC與BD交于點K,連接CD.
(1)若點A,B在反比例函數y=的圖象的同一分支上,如圖1,試證明:
①S四邊形AEDK=S四邊形CFBK;②AN=BM.
(2)若點A,B分別在反比例函數y=的圖象的不同分支上,如圖2,則AN與BM還相等嗎?試證明你的結論.

【答案】分析:點A,B在反比例函數y=的圖象上,所以矩形AEOC、矩形BDOF面積相等,由圖看出矩形OCKD是它們的公共部分,由此可知S四邊形AEDK=S四邊形CFBK,根據面積為長×寬,易得AK•DK=BK•CK可知AB∥CD,從而四邊形ACDN、BDCM為平行四邊形,所以AN=CD=BM.
解答:(1)證明:①∵AC⊥x軸,AE⊥y軸,
∴四邊形AEOC為矩形.
∵BF⊥x軸,BD⊥y軸,
∴四邊形BDOF為矩形.
∵AC⊥x軸,BD⊥y軸,
∴四邊形AEDK,DOCK,CFBK均為矩形.(1分)
∵OC=x1,AC=y1,x1•y1=k,
∴S矩形AEOC=OC•AC=x1•y1=k
∵OF=x2,FB=y2,x2•y2=k,
∴S矩形BDOF=OF•FB=x2•y2=k.
∴S矩形AEOC=S矩形BDOF
∵S矩形AEDK=S矩形AEOC-S矩形DOCK,S矩形CFBK=S矩形BDOF-S矩形DOCK,
∴S矩形AEDK=S矩形CFBK.(2分)
②由(1)知:S矩形AEDK=S矩形CFBK
∴AK•DK=BK•CK.
.(4分)
∵∠AKB=∠CKD=90°,
∴△AKB∽△CKD.(5分)
∴∠CDK=∠ABK.
∴AB∥CD.(6分)
∵AC∥y軸,
∴四邊形ACDN是平行四邊形.
∴AN=CD.(7分)
同理BM=CD.
∴AN=BM.(8分)

(2)解:AN與BM仍然相等.(9分)
∵S矩形AEDK=S矩形AEOC+S矩形ODKC,S矩形BKCF=S矩形BDOF+S矩形ODKC,
又∵S矩形AEOC=S矩形BDOF=k,
∴S矩形AEDK=S矩形BKCF.(10分)
∴AK•DK=BK•CK.

∵∠K=∠K,
∴△CDK∽△ABK.
∴∠CDK=∠ABK.
∴AB∥CD.(11分)
∵AC∥y軸,
∴四邊形ANDC是平行四邊形.
∴AN=CD.
同理BM=CD.
∴AN=BM.(12分)
點評:此題綜合考查了反比例函數的性質,平行四邊形等多個知識點.此題難度稍大,綜合性比較強,注意對各個知識點的靈活應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在平面直角坐標系xOy中,一次函數y=ax+b(a≠0)的圖象l與y=-x+3的圖象關于y軸對稱,直線l又與反比例函數y=
kx
交于點A(1,m),求m及k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知如圖,一次函數y=ax+b圖象經過點(1,2)、點(-1,6).求:
(1)這個一次函數的解析式;
(2)一次函數圖象與兩坐標軸圍成的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知二次函數y=ax2+bx+c的圖象如圖所示,則在同一坐標系中,一次函數y=ax+c和反比例函數y=
a
x
的圖象大致是(  )
A、精英家教網
B、精英家教網
C、精英家教網
D、精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,一次函數y=ax+b的圖象與反比例函數y=
k
x
的圖象交于A、B兩點,與x軸交于點C,與y軸交于點D,已知OA=
10
,tan∠AOC=
1
3
,點B的坐標為(m,-2).
(1)求反比例函數及一次函數的解析式;
(2)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•紹興三模)在函數中,我們把關于x的一次函數y=ax+b與y=bx+a稱為一對交換函數,如y=3x+1與與y=x+3是一對交換函數.稱函數y=3x+1與是函數y=x+3的交換函數.
(1)求函數y=-
2
3
x+4與交換函數的圖象的交點坐標;
(2)若函數y=-
2
3
x+b(b為常數)與交換函數的圖象及縱軸所圍三角形的面積為4,求b的值.

查看答案和解析>>

同步練習冊答案