【題目】小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分)的關(guān)系如圖所示,請結(jié)合圖像,解答下列問題:

1a= b= ,m=

2若小軍的速度是120/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;

3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?

【答案】(1)a=10,b=15,m=200;(2)750米;(3)17.5或20分.

【解析】試題分析:1)根據(jù)時間=路程÷速度,即可求出a的值,結(jié)合休息的時間為5分鐘,即可求出b的值,再根據(jù)速度=路程÷時間,求出m的值;

2)根據(jù)數(shù)量關(guān)系找出線段BCOD所在的直線函數(shù)解析式,聯(lián)立方程即可求出即可;

3)根據(jù)(2)結(jié)論,結(jié)合二者之間相距100米,即可得到關(guān)于x的絕對值的關(guān)系式,然后分類求解即可.

試題解析:1a=10,b=15,m=200

2BC段關(guān)系式為:

OD段關(guān)系式為:

相遇時,即,即120x=200x-1500,

解得:x=18.75

此時: =2250 ,

距離圖書館:3000-2250=750(米),

(3)由題意可的:||=100,

所以:當(dāng)=100時,解得x=20

當(dāng)時,解得x=17.5 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=5,在AB邊上有一點(diǎn)P,過點(diǎn)PPMBC,垂足為M,過點(diǎn)MMNAC,垂足為N,過點(diǎn)NNQAB,垂足為Q.當(dāng)PQ=1時,BP=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PEABE,PFACF,MEF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是__________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名學(xué)生進(jìn)行射擊練習(xí),兩人在相同條件下各射靶次,將射擊結(jié)果作統(tǒng)計分析如下:

環(huán)數(shù)

平均數(shù)

眾數(shù)

方差

甲命中環(huán)數(shù)的次數(shù)

乙命中環(huán)數(shù)的次數(shù)

________

________

________

請你完成上表中乙進(jìn)行射擊練習(xí)的相關(guān)數(shù)據(jù);

根據(jù)你所學(xué)的統(tǒng)計知識,利用上面提供的數(shù)據(jù)評價甲、乙兩人的射擊水平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)(﹣9.8)﹣(+6);

(2)4.7﹣(﹣8.9)﹣7.5+(﹣6);

(3)1﹣3+5﹣7+9﹣11+…+97﹣99

(4)1.75+(﹣6)+3+(﹣1)+(+2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,E是CD的中點(diǎn),將△ADE繞點(diǎn)A按順時針方向旋轉(zhuǎn)后得到△ABF,則EF的長等于(

A.3
B.
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在BC邊上,將△ABD繞點(diǎn)A按逆時針方向旋轉(zhuǎn)得到△ACE,連接DE,則圖中與∠BAD相等的角,除∠CAE外,還有角 . (用三個字母表示該角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)E在正方形ABCD外,BE=4,CE=2,∠BEC=135°,將△BEC繞點(diǎn)B逆時針旋轉(zhuǎn)得到△BFA,求FE,F(xiàn)C的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對稱,已知A,D1 , D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).

(1)求對稱中心的坐標(biāo).
(2)寫出頂點(diǎn)B,C,B1 , C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案